{"title":"工程氧化铁纳米平台:为精确癌症治疗重新编程免疫抑制利基","authors":"Chao Yang, Shenglong Li, Liming Wang","doi":"10.1186/s12943-025-02443-2","DOIUrl":null,"url":null,"abstract":"Iron oxide nanoparticles (IONPs) have transitioned from conventional magnetic resonance imaging (MRI) contrast agents into structurally programmable combined imaging/treatment tools, leveraging their superparamagnetism, catalytic activity, and surface engineering versatility to achieve spatiotemporal control over drug delivery and immune modulation. Advances in nanofabrication now yield size-optimized aggregates with enhanced tumor accumulation through the enhanced permeability and retention (EPR) effect, while clinically approved formulations like ferumoxytol demonstrate intrinsic immunomodulatory functionality, positioning IONPs as pivotal tools for precision oncology. Conversely, cancer immunotherapy remains limited by the immunosuppressive tumor microenvironment (TME), where cellular suppression via M2-polarized macrophages and regulatory T cells (Tregs) synergizes with physical exclusion from dense extracellular matrices and metabolic sabotage through lactate-driven acidosis. These barriers establish “immune-cold” phenotypes characterized by deficient CD8⁺ T-cell infiltration and tertiary lymphoid structure formation, driving checkpoint inhibitor resistance with sub-30% response rates in solid tumors. To overcome these constraints, IONPs orchestrate multimodal immunotherapeutic strategies: they reprogram suppressive niches by polarizing macrophages toward M1 phenotypes, activate STING pathways, and induce immunogenic ferroptosis; enable precision delivery via magnetic lymph node targeting and cancer cell membrane-mediated homologous tumor homing; and facilitate real-time theranostics through MRI/magnetic particle imaging (MPI)-monitored immune cell trafficking. Preclinical validation confirms synergistic efficacy, with combinatorial regimens achieving over 50% complete tumor regression by converting immunologically cold microenvironments into inflamed states. This review systematically explores cutting-edge IONP-based innovations—spanning immune cell engineering, biohybrid systems, and energy-amplified therapies—that bridge localized tumor eradication with systemic antitumor immunity, while critically evaluating translational barriers for clinical implementation. ","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"15 1","pages":""},"PeriodicalIF":33.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineered iron oxide nanoplatforms: reprogramming immunosuppressive niches for precision cancer theranostics\",\"authors\":\"Chao Yang, Shenglong Li, Liming Wang\",\"doi\":\"10.1186/s12943-025-02443-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iron oxide nanoparticles (IONPs) have transitioned from conventional magnetic resonance imaging (MRI) contrast agents into structurally programmable combined imaging/treatment tools, leveraging their superparamagnetism, catalytic activity, and surface engineering versatility to achieve spatiotemporal control over drug delivery and immune modulation. Advances in nanofabrication now yield size-optimized aggregates with enhanced tumor accumulation through the enhanced permeability and retention (EPR) effect, while clinically approved formulations like ferumoxytol demonstrate intrinsic immunomodulatory functionality, positioning IONPs as pivotal tools for precision oncology. Conversely, cancer immunotherapy remains limited by the immunosuppressive tumor microenvironment (TME), where cellular suppression via M2-polarized macrophages and regulatory T cells (Tregs) synergizes with physical exclusion from dense extracellular matrices and metabolic sabotage through lactate-driven acidosis. These barriers establish “immune-cold” phenotypes characterized by deficient CD8⁺ T-cell infiltration and tertiary lymphoid structure formation, driving checkpoint inhibitor resistance with sub-30% response rates in solid tumors. To overcome these constraints, IONPs orchestrate multimodal immunotherapeutic strategies: they reprogram suppressive niches by polarizing macrophages toward M1 phenotypes, activate STING pathways, and induce immunogenic ferroptosis; enable precision delivery via magnetic lymph node targeting and cancer cell membrane-mediated homologous tumor homing; and facilitate real-time theranostics through MRI/magnetic particle imaging (MPI)-monitored immune cell trafficking. Preclinical validation confirms synergistic efficacy, with combinatorial regimens achieving over 50% complete tumor regression by converting immunologically cold microenvironments into inflamed states. This review systematically explores cutting-edge IONP-based innovations—spanning immune cell engineering, biohybrid systems, and energy-amplified therapies—that bridge localized tumor eradication with systemic antitumor immunity, while critically evaluating translational barriers for clinical implementation. \",\"PeriodicalId\":19000,\"journal\":{\"name\":\"Molecular Cancer\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":33.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12943-025-02443-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02443-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Engineered iron oxide nanoplatforms: reprogramming immunosuppressive niches for precision cancer theranostics
Iron oxide nanoparticles (IONPs) have transitioned from conventional magnetic resonance imaging (MRI) contrast agents into structurally programmable combined imaging/treatment tools, leveraging their superparamagnetism, catalytic activity, and surface engineering versatility to achieve spatiotemporal control over drug delivery and immune modulation. Advances in nanofabrication now yield size-optimized aggregates with enhanced tumor accumulation through the enhanced permeability and retention (EPR) effect, while clinically approved formulations like ferumoxytol demonstrate intrinsic immunomodulatory functionality, positioning IONPs as pivotal tools for precision oncology. Conversely, cancer immunotherapy remains limited by the immunosuppressive tumor microenvironment (TME), where cellular suppression via M2-polarized macrophages and regulatory T cells (Tregs) synergizes with physical exclusion from dense extracellular matrices and metabolic sabotage through lactate-driven acidosis. These barriers establish “immune-cold” phenotypes characterized by deficient CD8⁺ T-cell infiltration and tertiary lymphoid structure formation, driving checkpoint inhibitor resistance with sub-30% response rates in solid tumors. To overcome these constraints, IONPs orchestrate multimodal immunotherapeutic strategies: they reprogram suppressive niches by polarizing macrophages toward M1 phenotypes, activate STING pathways, and induce immunogenic ferroptosis; enable precision delivery via magnetic lymph node targeting and cancer cell membrane-mediated homologous tumor homing; and facilitate real-time theranostics through MRI/magnetic particle imaging (MPI)-monitored immune cell trafficking. Preclinical validation confirms synergistic efficacy, with combinatorial regimens achieving over 50% complete tumor regression by converting immunologically cold microenvironments into inflamed states. This review systematically explores cutting-edge IONP-based innovations—spanning immune cell engineering, biohybrid systems, and energy-amplified therapies—that bridge localized tumor eradication with systemic antitumor immunity, while critically evaluating translational barriers for clinical implementation.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.