{"title":"沈东矿区退化土壤固碳细菌的固碳潜力及改良土壤效果","authors":"Yuxin Han, Yichi Ma, Chenhao Wu, Bing Xiao, Jiahui Hu, Nengxiang Shu, Mingyu Cheng, Jianli Jia","doi":"10.1002/biot.70108","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Efficient carbon-sequestering microorganisms are crucial for enhancing soil quality and reducing carbon emissions, particularly in semiarid coal mining areas. In this study, we analyzed the soil carbon-fixing microbial taxa and pathways in the Shendong mining area via high-throughput sequencing, and concluded that their main carbon sequestering pathway is the reduced citrate cycle (rTCA cycle), which has the potential for microbial carbon sequestration. Bacterial strains with high CO<sub>2</sub> sequestration efficiency were isolated and identified, and their potential for improving soil carbon storage and quality was assessed. Through a systematic process of isolation, identification, and functional assessment, three dominant strains, <i>Streptomyces marokkonensis</i> FC1, <i>Streptomyces viridochromogenes</i> FC2, <i>and Dyadobacter endophyticus</i> FC3 with significant CO<sub>2</sub> sequestration capacity were obtained. Their adaptability and carbon fixation efficiency were confirmed through physiological, biochemical, and genetic analyses. The results from indoor <sup>13</sup>C isotope labeling experiments and 42-day soil improvement experiments demonstrated that CO<sub>2</sub> sequestration and soil improvement effects were achieved in coal mine soils under semiarid conditions. Among the strains, FC2 presented the highest carbon fixation potential and soil improvement efficiency at approximately 8% soil water content. This highlights the potential application of carbon-fixing bacteria in microbial-based strategies for the ecological restoration of degraded mining soils.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 9","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO2 Sequestration Potential and Soil Improvement Effects by Carbon-Fixing Bacteria Isolated From Degraded Soils in Shendong Coal Mining Area Located in Northwest China\",\"authors\":\"Yuxin Han, Yichi Ma, Chenhao Wu, Bing Xiao, Jiahui Hu, Nengxiang Shu, Mingyu Cheng, Jianli Jia\",\"doi\":\"10.1002/biot.70108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Efficient carbon-sequestering microorganisms are crucial for enhancing soil quality and reducing carbon emissions, particularly in semiarid coal mining areas. In this study, we analyzed the soil carbon-fixing microbial taxa and pathways in the Shendong mining area via high-throughput sequencing, and concluded that their main carbon sequestering pathway is the reduced citrate cycle (rTCA cycle), which has the potential for microbial carbon sequestration. Bacterial strains with high CO<sub>2</sub> sequestration efficiency were isolated and identified, and their potential for improving soil carbon storage and quality was assessed. Through a systematic process of isolation, identification, and functional assessment, three dominant strains, <i>Streptomyces marokkonensis</i> FC1, <i>Streptomyces viridochromogenes</i> FC2, <i>and Dyadobacter endophyticus</i> FC3 with significant CO<sub>2</sub> sequestration capacity were obtained. Their adaptability and carbon fixation efficiency were confirmed through physiological, biochemical, and genetic analyses. The results from indoor <sup>13</sup>C isotope labeling experiments and 42-day soil improvement experiments demonstrated that CO<sub>2</sub> sequestration and soil improvement effects were achieved in coal mine soils under semiarid conditions. Among the strains, FC2 presented the highest carbon fixation potential and soil improvement efficiency at approximately 8% soil water content. This highlights the potential application of carbon-fixing bacteria in microbial-based strategies for the ecological restoration of degraded mining soils.</p>\\n </div>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"20 9\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/biot.70108\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/biot.70108","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
CO2 Sequestration Potential and Soil Improvement Effects by Carbon-Fixing Bacteria Isolated From Degraded Soils in Shendong Coal Mining Area Located in Northwest China
Efficient carbon-sequestering microorganisms are crucial for enhancing soil quality and reducing carbon emissions, particularly in semiarid coal mining areas. In this study, we analyzed the soil carbon-fixing microbial taxa and pathways in the Shendong mining area via high-throughput sequencing, and concluded that their main carbon sequestering pathway is the reduced citrate cycle (rTCA cycle), which has the potential for microbial carbon sequestration. Bacterial strains with high CO2 sequestration efficiency were isolated and identified, and their potential for improving soil carbon storage and quality was assessed. Through a systematic process of isolation, identification, and functional assessment, three dominant strains, Streptomyces marokkonensis FC1, Streptomyces viridochromogenes FC2, and Dyadobacter endophyticus FC3 with significant CO2 sequestration capacity were obtained. Their adaptability and carbon fixation efficiency were confirmed through physiological, biochemical, and genetic analyses. The results from indoor 13C isotope labeling experiments and 42-day soil improvement experiments demonstrated that CO2 sequestration and soil improvement effects were achieved in coal mine soils under semiarid conditions. Among the strains, FC2 presented the highest carbon fixation potential and soil improvement efficiency at approximately 8% soil water content. This highlights the potential application of carbon-fixing bacteria in microbial-based strategies for the ecological restoration of degraded mining soils.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.