Igor M. L. Pataro, Juan D. Gil, José L. Guzmán, Manuel Berenguel
{"title":"利用太阳能集热器现场系统进行控制教育的虚拟实验室","authors":"Igor M. L. Pataro, Juan D. Gil, José L. Guzmán, Manuel Berenguel","doi":"10.1002/cae.70077","DOIUrl":null,"url":null,"abstract":"<p>New educational tools have emerged as innovative approaches that boost student engagement and facilitate a deeper understanding of complex subjects. Focusing on progressing in control engineering education, this study presents the development of a Virtual Lab (VL) designed to teach foundational and advanced concepts in process control. The VL uses a Solar Collector Field (SCF) system as a case study to integrate key topics in control engineering subjects, such as system modeling, Proportional, Integral, and Derivative (PID) control, predictive control, feedforward strategies, and nonlinear control approaches. The proposed system is versatile, which enriches the student experience through widely customizable and realistic simulations. The simulated system, characterized by nonlinear dynamics, time delays, and solar irradiance disturbances, offers students a hands-on learning environment for control system design and analysis. Built using the Easy JavaScript Simulation platform, the SCF VL features an intuitive interface that enhances student engagement. The SCF VL, freely accessible online and on any device (computer, tablet, or smartphone), is a versatile resource for promoting deep understanding and practical skills in control engineering education.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"33 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cae.70077","citationCount":"0","resultStr":"{\"title\":\"Virtual Laboratory for Control Education Using a Solar Collector Field System\",\"authors\":\"Igor M. L. Pataro, Juan D. Gil, José L. Guzmán, Manuel Berenguel\",\"doi\":\"10.1002/cae.70077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>New educational tools have emerged as innovative approaches that boost student engagement and facilitate a deeper understanding of complex subjects. Focusing on progressing in control engineering education, this study presents the development of a Virtual Lab (VL) designed to teach foundational and advanced concepts in process control. The VL uses a Solar Collector Field (SCF) system as a case study to integrate key topics in control engineering subjects, such as system modeling, Proportional, Integral, and Derivative (PID) control, predictive control, feedforward strategies, and nonlinear control approaches. The proposed system is versatile, which enriches the student experience through widely customizable and realistic simulations. The simulated system, characterized by nonlinear dynamics, time delays, and solar irradiance disturbances, offers students a hands-on learning environment for control system design and analysis. Built using the Easy JavaScript Simulation platform, the SCF VL features an intuitive interface that enhances student engagement. The SCF VL, freely accessible online and on any device (computer, tablet, or smartphone), is a versatile resource for promoting deep understanding and practical skills in control engineering education.</p>\",\"PeriodicalId\":50643,\"journal\":{\"name\":\"Computer Applications in Engineering Education\",\"volume\":\"33 5\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cae.70077\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Applications in Engineering Education\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cae.70077\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Applications in Engineering Education","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cae.70077","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Virtual Laboratory for Control Education Using a Solar Collector Field System
New educational tools have emerged as innovative approaches that boost student engagement and facilitate a deeper understanding of complex subjects. Focusing on progressing in control engineering education, this study presents the development of a Virtual Lab (VL) designed to teach foundational and advanced concepts in process control. The VL uses a Solar Collector Field (SCF) system as a case study to integrate key topics in control engineering subjects, such as system modeling, Proportional, Integral, and Derivative (PID) control, predictive control, feedforward strategies, and nonlinear control approaches. The proposed system is versatile, which enriches the student experience through widely customizable and realistic simulations. The simulated system, characterized by nonlinear dynamics, time delays, and solar irradiance disturbances, offers students a hands-on learning environment for control system design and analysis. Built using the Easy JavaScript Simulation platform, the SCF VL features an intuitive interface that enhances student engagement. The SCF VL, freely accessible online and on any device (computer, tablet, or smartphone), is a versatile resource for promoting deep understanding and practical skills in control engineering education.
期刊介绍:
Computer Applications in Engineering Education provides a forum for publishing peer-reviewed timely information on the innovative uses of computers, Internet, and software tools in engineering education. Besides new courses and software tools, the CAE journal covers areas that support the integration of technology-based modules in the engineering curriculum and promotes discussion of the assessment and dissemination issues associated with these new implementation methods.