基于结构感知特征融合的壁画模式识别边缘友好NAS框架

IF 0.5 Q4 TELECOMMUNICATIONS
Xianke Zhou, Wenjie Deng, Fengran Xie
{"title":"基于结构感知特征融合的壁画模式识别边缘友好NAS框架","authors":"Xianke Zhou,&nbsp;Wenjie Deng,&nbsp;Fengran Xie","doi":"10.1002/itl2.70109","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Ancient mural recognition faces unique challenges due to degradation, stylistic variations, and domain-specific symbolism. We propose a lightweight, edge-deployable neural architecture search (NAS) framework—SG-NAS-MPR—designed for accurate mural pattern recognition. Our framework integrates gated convolutions with frequency-domain fusion in a structure-aware module to enhance features under visual noise. A contrast-aware NAS strategy tailors compact backbones for real-time inference. Experiments on Dunhuang mural datasets show that our method surpasses existing CNN and NAS models in accuracy (93.4%) and F1-score (0.922), whereas reducing latency and model size. This work enables efficient and interpretable recognition in cultural heritage computing, supporting mobile museum applications and AR-based mural analysis.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 5","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge-Friendly NAS Framework for Mural Pattern Recognition via Structure-Aware Feature Fusion\",\"authors\":\"Xianke Zhou,&nbsp;Wenjie Deng,&nbsp;Fengran Xie\",\"doi\":\"10.1002/itl2.70109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Ancient mural recognition faces unique challenges due to degradation, stylistic variations, and domain-specific symbolism. We propose a lightweight, edge-deployable neural architecture search (NAS) framework—SG-NAS-MPR—designed for accurate mural pattern recognition. Our framework integrates gated convolutions with frequency-domain fusion in a structure-aware module to enhance features under visual noise. A contrast-aware NAS strategy tailors compact backbones for real-time inference. Experiments on Dunhuang mural datasets show that our method surpasses existing CNN and NAS models in accuracy (93.4%) and F1-score (0.922), whereas reducing latency and model size. This work enables efficient and interpretable recognition in cultural heritage computing, supporting mobile museum applications and AR-based mural analysis.</p>\\n </div>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"8 5\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

由于退化、风格变化和特定领域的象征意义,古代壁画识别面临着独特的挑战。我们提出了一个轻量级的,边缘可部署的神经架构搜索(NAS)框架- sg -NAS- mpr -设计用于准确的壁画模式识别。我们的框架将门控卷积与频域融合集成在结构感知模块中,以增强视觉噪声下的特征。对比感知的NAS策略为实时推理定制了紧凑的主干。在敦煌壁画数据集上的实验表明,我们的方法在准确率(93.4%)和f1分数(0.922)上都超过了现有的CNN和NAS模型,同时减少了延迟和模型大小。这项工作可以在文化遗产计算中实现高效和可解释的识别,支持移动博物馆应用程序和基于ar的壁画分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge-Friendly NAS Framework for Mural Pattern Recognition via Structure-Aware Feature Fusion

Ancient mural recognition faces unique challenges due to degradation, stylistic variations, and domain-specific symbolism. We propose a lightweight, edge-deployable neural architecture search (NAS) framework—SG-NAS-MPR—designed for accurate mural pattern recognition. Our framework integrates gated convolutions with frequency-domain fusion in a structure-aware module to enhance features under visual noise. A contrast-aware NAS strategy tailors compact backbones for real-time inference. Experiments on Dunhuang mural datasets show that our method surpasses existing CNN and NAS models in accuracy (93.4%) and F1-score (0.922), whereas reducing latency and model size. This work enables efficient and interpretable recognition in cultural heritage computing, supporting mobile museum applications and AR-based mural analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信