基于模态的对称中心估计

IF 0.6 4区 数学 Q3 STATISTICS & PROBABILITY
José E. Chacón, Javier Fernández Serrano
{"title":"基于模态的对称中心估计","authors":"José E. Chacón,&nbsp;Javier Fernández Serrano","doi":"10.1007/s10463-025-00942-z","DOIUrl":null,"url":null,"abstract":"<div><p>In the mean-median-mode triad of univariate centrality measures, the mode has been overlooked for estimating the center of symmetry in continuous and unimodal settings. This paper expands on the connection between kernel mode estimators and M-estimators for location, bridging the gap between the nonparametrics and robust statistics communities. The variance of modal estimators is studied in terms of a bandwidth parameter, establishing conditions for an optimal solution that outperforms the household sample mean. A purely nonparametric approach is adopted, modeling heavy-tailedness through regular variation. The results lead to an estimator proposal that includes a novel one-parameter family of kernels with compact support, offering extra robustness and efficiency. The effectiveness and versatility of the new method are demonstrated in a real-world case study and a thorough simulation study, comparing favorably to traditional and more competitive alternatives. Several myths about the mode are clarified along the way, reopening the quest for flexible and efficient nonparametric estimators.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"77 5","pages":"685 - 717"},"PeriodicalIF":0.6000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mode-based estimation of the center of symmetry\",\"authors\":\"José E. Chacón,&nbsp;Javier Fernández Serrano\",\"doi\":\"10.1007/s10463-025-00942-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the mean-median-mode triad of univariate centrality measures, the mode has been overlooked for estimating the center of symmetry in continuous and unimodal settings. This paper expands on the connection between kernel mode estimators and M-estimators for location, bridging the gap between the nonparametrics and robust statistics communities. The variance of modal estimators is studied in terms of a bandwidth parameter, establishing conditions for an optimal solution that outperforms the household sample mean. A purely nonparametric approach is adopted, modeling heavy-tailedness through regular variation. The results lead to an estimator proposal that includes a novel one-parameter family of kernels with compact support, offering extra robustness and efficiency. The effectiveness and versatility of the new method are demonstrated in a real-world case study and a thorough simulation study, comparing favorably to traditional and more competitive alternatives. Several myths about the mode are clarified along the way, reopening the quest for flexible and efficient nonparametric estimators.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":\"77 5\",\"pages\":\"685 - 717\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-025-00942-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-025-00942-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在单变量中心性测量的中位数模式三联中,在估计连续和单峰设置的对称中心时,模式被忽略了。本文扩展了核模估计量和位置m估计量之间的联系,弥合了非参数和鲁棒统计社区之间的差距。根据带宽参数研究了模态估计量的方差,为优于家庭样本均值的最优解建立了条件。采用纯非参数方法,通过正则变分对重尾性进行建模。结果导致一个估计方案,其中包括一个新的单参数核族紧凑的支持,提供额外的鲁棒性和效率。新方法的有效性和通用性在现实世界的案例研究和全面的仿真研究中得到了证明,与传统的更具竞争力的替代方法相比具有优势。在此过程中澄清了关于该模态的几个迷思,重新开启了对灵活有效的非参数估计器的探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mode-based estimation of the center of symmetry

In the mean-median-mode triad of univariate centrality measures, the mode has been overlooked for estimating the center of symmetry in continuous and unimodal settings. This paper expands on the connection between kernel mode estimators and M-estimators for location, bridging the gap between the nonparametrics and robust statistics communities. The variance of modal estimators is studied in terms of a bandwidth parameter, establishing conditions for an optimal solution that outperforms the household sample mean. A purely nonparametric approach is adopted, modeling heavy-tailedness through regular variation. The results lead to an estimator proposal that includes a novel one-parameter family of kernels with compact support, offering extra robustness and efficiency. The effectiveness and versatility of the new method are demonstrated in a real-world case study and a thorough simulation study, comparing favorably to traditional and more competitive alternatives. Several myths about the mode are clarified along the way, reopening the quest for flexible and efficient nonparametric estimators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信