Ali Nada , Hazem Ismail Ali , Liang Liu , Yousra Alkabani
{"title":"基于GPU的多用户MIMO上行检测软件加速","authors":"Ali Nada , Hazem Ismail Ali , Liang Liu , Yousra Alkabani","doi":"10.1016/j.parco.2025.103150","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the exploration of GPU-accelerated block-wise decompositions for zero-forcing (ZF) based QR and Cholesky methods applied to massive multiple-input multiple-output (MIMO) uplink detection algorithms. Three algorithms are evaluated: ZF with block Cholesky decomposition, ZF with block QR decomposition (QRD), and minimum mean square error (MMSE) with block Cholesky decomposition. The latter was the only one previously explored, but it used standard Cholesky decomposition. Our approach achieves an 11% improvement over the previous GPU-accelerated MMSE study.</div><div>Through performance analysis, we observe a trade-off between precision and execution time. Reducing precision from FP64 to FP32 improves execution time but increases bit error rate (BER), with ZF-based QRD reducing execution time from <span><math><mrow><mn>2</mn><mo>.</mo><mn>04</mn><mspace></mspace><mi>μ</mi><mi>s</mi></mrow></math></span> to <span><math><mrow><mn>1</mn><mo>.</mo><mn>24</mn><mspace></mspace><mi>μ</mi><mi>s</mi></mrow></math></span> for a 128 × 8 MIMO size. The study also highlights that larger MIMO sizes, particularly 2048 × 32, require GPUs to fully utilize their computational and memory capabilities, especially under FP64 precision. In contrast, smaller matrices are compute-bound.</div><div>Our results recommend GPUs for larger MIMO sizes, as they offer the parallelism and memory resources necessary to efficiently handle the computational demands of next-generation networks. This work paves the way for scalable, GPU-based massive MIMO uplink detection systems.</div></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"125 ","pages":"Article 103150"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Software acceleration of multi-user MIMO uplink detection on GPU\",\"authors\":\"Ali Nada , Hazem Ismail Ali , Liang Liu , Yousra Alkabani\",\"doi\":\"10.1016/j.parco.2025.103150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents the exploration of GPU-accelerated block-wise decompositions for zero-forcing (ZF) based QR and Cholesky methods applied to massive multiple-input multiple-output (MIMO) uplink detection algorithms. Three algorithms are evaluated: ZF with block Cholesky decomposition, ZF with block QR decomposition (QRD), and minimum mean square error (MMSE) with block Cholesky decomposition. The latter was the only one previously explored, but it used standard Cholesky decomposition. Our approach achieves an 11% improvement over the previous GPU-accelerated MMSE study.</div><div>Through performance analysis, we observe a trade-off between precision and execution time. Reducing precision from FP64 to FP32 improves execution time but increases bit error rate (BER), with ZF-based QRD reducing execution time from <span><math><mrow><mn>2</mn><mo>.</mo><mn>04</mn><mspace></mspace><mi>μ</mi><mi>s</mi></mrow></math></span> to <span><math><mrow><mn>1</mn><mo>.</mo><mn>24</mn><mspace></mspace><mi>μ</mi><mi>s</mi></mrow></math></span> for a 128 × 8 MIMO size. The study also highlights that larger MIMO sizes, particularly 2048 × 32, require GPUs to fully utilize their computational and memory capabilities, especially under FP64 precision. In contrast, smaller matrices are compute-bound.</div><div>Our results recommend GPUs for larger MIMO sizes, as they offer the parallelism and memory resources necessary to efficiently handle the computational demands of next-generation networks. This work paves the way for scalable, GPU-based massive MIMO uplink detection systems.</div></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"125 \",\"pages\":\"Article 103150\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167819125000262\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819125000262","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Software acceleration of multi-user MIMO uplink detection on GPU
This paper presents the exploration of GPU-accelerated block-wise decompositions for zero-forcing (ZF) based QR and Cholesky methods applied to massive multiple-input multiple-output (MIMO) uplink detection algorithms. Three algorithms are evaluated: ZF with block Cholesky decomposition, ZF with block QR decomposition (QRD), and minimum mean square error (MMSE) with block Cholesky decomposition. The latter was the only one previously explored, but it used standard Cholesky decomposition. Our approach achieves an 11% improvement over the previous GPU-accelerated MMSE study.
Through performance analysis, we observe a trade-off between precision and execution time. Reducing precision from FP64 to FP32 improves execution time but increases bit error rate (BER), with ZF-based QRD reducing execution time from to for a 128 × 8 MIMO size. The study also highlights that larger MIMO sizes, particularly 2048 × 32, require GPUs to fully utilize their computational and memory capabilities, especially under FP64 precision. In contrast, smaller matrices are compute-bound.
Our results recommend GPUs for larger MIMO sizes, as they offer the parallelism and memory resources necessary to efficiently handle the computational demands of next-generation networks. This work paves the way for scalable, GPU-based massive MIMO uplink detection systems.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications