煎饼分拣注意事项

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Marcin Peczarski
{"title":"煎饼分拣注意事项","authors":"Marcin Peczarski","doi":"10.1016/j.ipl.2025.106597","DOIUrl":null,"url":null,"abstract":"<div><div>We present generalized approach to the proof of the lower bound for unburnt pancake sorting problem, where we search for the number <span><math><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> of prefix reversals required to sort a stack (permutation) of <em>n</em> pancakes. For this purpose we introduce a new concept of guarded pancake blocks. Gates and Papadimitriou proved that <span><math><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><mn>17</mn><mi>n</mi><mo>/</mo><mn>16</mn></math></span> for <em>n</em> a multiple of 16. Heydari and Sudborough improved this bound to <span><math><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><mn>15</mn><mi>n</mi><mo>/</mo><mn>14</mn></math></span> for <em>n</em> a multiple of 14. We extend that result to <span><math><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><mo>⌊</mo><mo>(</mo><mn>15</mn><mi>n</mi><mo>+</mo><mn>9</mn><mo>)</mo><mo>/</mo><mn>14</mn><mo>⌋</mo></math></span> for every <span><math><mi>n</mi><mo>≥</mo><mn>6</mn></math></span>.</div></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"191 ","pages":"Article 106597"},"PeriodicalIF":0.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on pancake sorting\",\"authors\":\"Marcin Peczarski\",\"doi\":\"10.1016/j.ipl.2025.106597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present generalized approach to the proof of the lower bound for unburnt pancake sorting problem, where we search for the number <span><math><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> of prefix reversals required to sort a stack (permutation) of <em>n</em> pancakes. For this purpose we introduce a new concept of guarded pancake blocks. Gates and Papadimitriou proved that <span><math><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><mn>17</mn><mi>n</mi><mo>/</mo><mn>16</mn></math></span> for <em>n</em> a multiple of 16. Heydari and Sudborough improved this bound to <span><math><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><mn>15</mn><mi>n</mi><mo>/</mo><mn>14</mn></math></span> for <em>n</em> a multiple of 14. We extend that result to <span><math><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><mo>⌊</mo><mo>(</mo><mn>15</mn><mi>n</mi><mo>+</mo><mn>9</mn><mo>)</mo><mo>/</mo><mn>14</mn><mo>⌋</mo></math></span> for every <span><math><mi>n</mi><mo>≥</mo><mn>6</mn></math></span>.</div></div>\",\"PeriodicalId\":56290,\"journal\":{\"name\":\"Information Processing Letters\",\"volume\":\"191 \",\"pages\":\"Article 106597\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020019025000419\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019025000419","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种证明未烧焦煎饼排序问题下界的广义方法,其中我们搜索排序n个煎饼堆叠(排列)所需的前缀反转数f(n)。为此,我们提出了一个新的概念,即保护煎饼块。Gates和Papadimitriou证明了当n是16的倍数时f(n)≥17n/16。Heydari和Sudborough在n为14的倍数时将这一界限改进为f(n)≥15n/14。我们将结果推广到f(n)≥⌊(15n+9)/14⌋对于每一个n≥6。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on pancake sorting
We present generalized approach to the proof of the lower bound for unburnt pancake sorting problem, where we search for the number f(n) of prefix reversals required to sort a stack (permutation) of n pancakes. For this purpose we introduce a new concept of guarded pancake blocks. Gates and Papadimitriou proved that f(n)17n/16 for n a multiple of 16. Heydari and Sudborough improved this bound to f(n)15n/14 for n a multiple of 14. We extend that result to f(n)(15n+9)/14 for every n6.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing Letters
Information Processing Letters 工程技术-计算机:信息系统
CiteScore
1.80
自引率
0.00%
发文量
70
审稿时长
7.3 months
期刊介绍: Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered. Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信