用lindstedt - poincarcarr方法理解Mathieu三次五次Duffing系统的稳定性和分岔

IF 3.2 3区 工程技术 Q2 MECHANICS
Abhik Mukherjee , Anurag
{"title":"用lindstedt - poincarcarr方法理解Mathieu三次五次Duffing系统的稳定性和分岔","authors":"Abhik Mukherjee ,&nbsp;Anurag","doi":"10.1016/j.ijnonlinmec.2025.105236","DOIUrl":null,"url":null,"abstract":"<div><div>The Mathieu equation serves as a foundational model in the study of parametrically excited systems and has been extensively analyzed using both analytical and numerical techniques. Motivated by its relevance to various physical and engineering systems, we investigate its nonlinear extension – the Mathieu cubic–quintic Duffing equation – which includes both cubic and quintic stiffness terms. This nonlinear variant exhibits rich dynamical behavior including complex stability transitions and bifurcations. To explore these phenomena, we employ the Lindstedt–Poincaré method, which allows us to analytically capture both pitchfork bifurcations (subcritical and supercritical) near unstable parametric resonance tongues and subharmonic bifurcations at higher values of excitation frequencies. The analytical predictions are validated using numerical simulations based on Poincaré sections. Our results reveal the emergence of two distinct unstable tongues centered around <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mn>2</mn><msub><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, as well as two subharmonic bifurcations located at <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mn>4</mn><msub><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mn>6</mn><msub><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>. We construct a comprehensive global bifurcation diagram in the parametric frequency–excitation strength space, showing transitions in equilibrium stability and the birth of multiple stable and unstable equilibrium points. Notably, the transition through each bifurcation boundary results in a specific number of stable and unstable equilibrium points alternatively. These findings not only extend the known behavior of the Mathieu and Mathieu–Duffing systems but also offer deeper insight into the complex dynamics induced by higher-order nonlinearities.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"179 ","pages":"Article 105236"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehending stability and bifurcations in Mathieu cubic–quintic Duffing system using Lindstedt–Poincaré methodology\",\"authors\":\"Abhik Mukherjee ,&nbsp;Anurag\",\"doi\":\"10.1016/j.ijnonlinmec.2025.105236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Mathieu equation serves as a foundational model in the study of parametrically excited systems and has been extensively analyzed using both analytical and numerical techniques. Motivated by its relevance to various physical and engineering systems, we investigate its nonlinear extension – the Mathieu cubic–quintic Duffing equation – which includes both cubic and quintic stiffness terms. This nonlinear variant exhibits rich dynamical behavior including complex stability transitions and bifurcations. To explore these phenomena, we employ the Lindstedt–Poincaré method, which allows us to analytically capture both pitchfork bifurcations (subcritical and supercritical) near unstable parametric resonance tongues and subharmonic bifurcations at higher values of excitation frequencies. The analytical predictions are validated using numerical simulations based on Poincaré sections. Our results reveal the emergence of two distinct unstable tongues centered around <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mn>2</mn><msub><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, as well as two subharmonic bifurcations located at <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mn>4</mn><msub><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mn>6</mn><msub><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>. We construct a comprehensive global bifurcation diagram in the parametric frequency–excitation strength space, showing transitions in equilibrium stability and the birth of multiple stable and unstable equilibrium points. Notably, the transition through each bifurcation boundary results in a specific number of stable and unstable equilibrium points alternatively. These findings not only extend the known behavior of the Mathieu and Mathieu–Duffing systems but also offer deeper insight into the complex dynamics induced by higher-order nonlinearities.</div></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":\"179 \",\"pages\":\"Article 105236\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746225002240\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746225002240","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

Mathieu方程是研究参数激励系统的一个基础模型,已经被广泛地运用解析和数值技术进行分析。由于其与各种物理和工程系统的相关性,我们研究了它的非线性扩展- Mathieu三次五次Duffing方程-其中包括三次和五次刚度项。这种非线性变异体具有丰富的动力学行为,包括复杂的稳定性转变和分岔。为了探索这些现象,我们采用了lindstedt - poincar方法,该方法允许我们分析捕获不稳定参数共振舌附近的干草叉分岔(亚临界和超临界)和更高激励频率值下的亚谐波分岔。利用poincarcar剖面的数值模拟验证了分析预测的正确性。我们的结果表明,在ωp=ωn和ωp=2ωn周围出现了两个不同的不稳定舌,以及位于ωp=4ωn和ωp=6ωn的两个亚谐波分岔。我们在参数频激强度空间中构造了一个全面的全局分岔图,显示了平衡稳定性的转变以及多个稳定和不稳定平衡点的产生。值得注意的是,通过每个分岔边界的过渡交替产生特定数量的稳定和不稳定平衡点。这些发现不仅扩展了Mathieu和Mathieu - duffing系统的已知行为,而且为高阶非线性引起的复杂动力学提供了更深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehending stability and bifurcations in Mathieu cubic–quintic Duffing system using Lindstedt–Poincaré methodology
The Mathieu equation serves as a foundational model in the study of parametrically excited systems and has been extensively analyzed using both analytical and numerical techniques. Motivated by its relevance to various physical and engineering systems, we investigate its nonlinear extension – the Mathieu cubic–quintic Duffing equation – which includes both cubic and quintic stiffness terms. This nonlinear variant exhibits rich dynamical behavior including complex stability transitions and bifurcations. To explore these phenomena, we employ the Lindstedt–Poincaré method, which allows us to analytically capture both pitchfork bifurcations (subcritical and supercritical) near unstable parametric resonance tongues and subharmonic bifurcations at higher values of excitation frequencies. The analytical predictions are validated using numerical simulations based on Poincaré sections. Our results reveal the emergence of two distinct unstable tongues centered around ωp=ωn and ωp=2ωn, as well as two subharmonic bifurcations located at ωp=4ωn and ωp=6ωn. We construct a comprehensive global bifurcation diagram in the parametric frequency–excitation strength space, showing transitions in equilibrium stability and the birth of multiple stable and unstable equilibrium points. Notably, the transition through each bifurcation boundary results in a specific number of stable and unstable equilibrium points alternatively. These findings not only extend the known behavior of the Mathieu and Mathieu–Duffing systems but also offer deeper insight into the complex dynamics induced by higher-order nonlinearities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信