由SMILES异质编码器衍生的手性描述符的评估

IF 5.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Natalia Baimacheva, Xinyue Gao, Joao Aires-de-Sousa
{"title":"由SMILES异质编码器衍生的手性描述符的评估","authors":"Natalia Baimacheva,&nbsp;Xinyue Gao,&nbsp;Joao Aires-de-Sousa","doi":"10.1186/s13321-025-01080-7","DOIUrl":null,"url":null,"abstract":"<div><p>Molecular representations of chirality, derived from latent space vectors (LSVs) of SMILES heteroencoders, were explored to train machine learning models to predict chiral properties, and were compared to conventional circular fingerprints. Latent space arithmetic was applied to enhance the representation of chirality, by calculating differences between the original descriptor of a molecule and the descriptor of its enantiomer, or the difference between the original descriptor and the descriptor obtained with the stereochemistry-depleted SMILES string. Machine learning was performed with the Random Forest algorithm applied to a dataset of 3858 molecules extracted from the literature (1929 pairs of enantiomers) to predict the elution order observed on the Chiralpak® AD-H column, as well as intrinsic structural chirality labels (R/S or canonical SMILES @/@@). The descriptors derived from the heteroencoders achieved an accuracy of up to 0.75 in the prediction of the elution order, and the fingerprints were superior (0.82). A better predictive ability was observed with the difference LSV descriptors than with the original descriptors.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01080-7","citationCount":"0","resultStr":"{\"title\":\"Evaluation of chirality descriptors derived from SMILES heteroencoders\",\"authors\":\"Natalia Baimacheva,&nbsp;Xinyue Gao,&nbsp;Joao Aires-de-Sousa\",\"doi\":\"10.1186/s13321-025-01080-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Molecular representations of chirality, derived from latent space vectors (LSVs) of SMILES heteroencoders, were explored to train machine learning models to predict chiral properties, and were compared to conventional circular fingerprints. Latent space arithmetic was applied to enhance the representation of chirality, by calculating differences between the original descriptor of a molecule and the descriptor of its enantiomer, or the difference between the original descriptor and the descriptor obtained with the stereochemistry-depleted SMILES string. Machine learning was performed with the Random Forest algorithm applied to a dataset of 3858 molecules extracted from the literature (1929 pairs of enantiomers) to predict the elution order observed on the Chiralpak® AD-H column, as well as intrinsic structural chirality labels (R/S or canonical SMILES @/@@). The descriptors derived from the heteroencoders achieved an accuracy of up to 0.75 in the prediction of the elution order, and the fingerprints were superior (0.82). A better predictive ability was observed with the difference LSV descriptors than with the original descriptors.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01080-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01080-7\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01080-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用smile异质编码器的潜在空间向量(latent space vector, LSVs)对手性分子表征进行了探索,以训练机器学习模型来预测手性,并与传统圆形指纹进行了比较。通过计算分子的原始描述符与其对映体描述符之间的差异,或者原始描述符与用立体化学缺失的SMILES字符串得到的描述符之间的差异,应用潜在空间算法增强了手性的表示。使用随机森林算法对从文献中提取的3858个分子(1929对对映体)进行机器学习,以预测Chiralpak®AD-H柱上观察到的洗脱顺序,以及固有结构手性标签(R/S或规范SMILES @/@)。基于异质编码器的描述符对洗脱顺序的预测精度高达0.75,指纹图谱的预测精度为0.82。与原始描述符相比,不同的LSV描述符具有更好的预测能力。我们的工作提出了潜在空间算法来获得分子手性的描述符从SMILES异质编码器。我们利用这种分子表征建立了定量结构-对映体选择性关系,用于预测手性色谱中对映体的洗脱顺序,并与圆形指纹图谱的结果进行了比较。研究表明,相对对映体的δ描述子增强了潜在空间向量编码手性的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of chirality descriptors derived from SMILES heteroencoders

Molecular representations of chirality, derived from latent space vectors (LSVs) of SMILES heteroencoders, were explored to train machine learning models to predict chiral properties, and were compared to conventional circular fingerprints. Latent space arithmetic was applied to enhance the representation of chirality, by calculating differences between the original descriptor of a molecule and the descriptor of its enantiomer, or the difference between the original descriptor and the descriptor obtained with the stereochemistry-depleted SMILES string. Machine learning was performed with the Random Forest algorithm applied to a dataset of 3858 molecules extracted from the literature (1929 pairs of enantiomers) to predict the elution order observed on the Chiralpak® AD-H column, as well as intrinsic structural chirality labels (R/S or canonical SMILES @/@@). The descriptors derived from the heteroencoders achieved an accuracy of up to 0.75 in the prediction of the elution order, and the fingerprints were superior (0.82). A better predictive ability was observed with the difference LSV descriptors than with the original descriptors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信