高通量计算和机器学习辅助预测难熔多主元素合金的力学性能

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Chengchen Jin, Kai Xiong, Zhongqian Lv, Congtao Luo, Hui Fang, Jiankang Zhang, Aimin Zhang, Shunmeng Zhang, Yong Mao, Yingwu Wang
{"title":"高通量计算和机器学习辅助预测难熔多主元素合金的力学性能","authors":"Chengchen Jin, Kai Xiong, Zhongqian Lv, Congtao Luo, Hui Fang, Jiankang Zhang, Aimin Zhang, Shunmeng Zhang, Yong Mao, Yingwu Wang","doi":"10.1002/adts.202500784","DOIUrl":null,"url":null,"abstract":"Refractory multi‐principal element alloys (RMPEAs) are promising materials for high‐temperature applications due to their exceptional mechanical stability, yet their vast compositional space poses challenges for efficient design. To address this challenge, this study introduces a novel computational framework integrating high‐throughput Exact Muffin‐Tin Orbitals with Coherent Potential Approximation (EMTO‐CPA) calculations, Copula entropy‐based feature selection, and machine learning (ML) to accelerate RMPEA development. Focusing on V‐Nb‐Ta ternary alloys, a comprehensive dataset of elastic properties for 4485 different compositions is constructed using EMTO‐CPA, achieving accuracy comparable to traditional the special quasi‐random structure (SQS) methods with significantly reduced computational cost. A Random Forest ML model, trained on Copula entropy‐selected features, predicted elastic constants (<jats:italic>C</jats:italic><jats:sub>11</jats:sub>, <jats:italic>C</jats:italic><jats:sub>12</jats:sub>, <jats:italic>E</jats:italic>) with high accuracy (R<jats:sup>2</jats:sup> &gt; 92%), and <jats:italic>C</jats:italic><jats:sub>44</jats:sub> with good accuracy (R<jats:sup>2</jats:sup> ≈ 88%). Experimental synthesis and characterization of selected V‐Nb‐Ta alloys validated the predictions, confirming the trend of elastic modulus with varying Ta content. This integrated approach not only overcomes the limitations of conventional computational methods but also provides a scalable pipeline for designing RMPEAs tailored for extreme environments.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"36 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High‐Throughput Calculation and Machine Learning‐Assisted Prediction of the Mechanical Properties of Refractory Multi‐Principal Element Alloys\",\"authors\":\"Chengchen Jin, Kai Xiong, Zhongqian Lv, Congtao Luo, Hui Fang, Jiankang Zhang, Aimin Zhang, Shunmeng Zhang, Yong Mao, Yingwu Wang\",\"doi\":\"10.1002/adts.202500784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Refractory multi‐principal element alloys (RMPEAs) are promising materials for high‐temperature applications due to their exceptional mechanical stability, yet their vast compositional space poses challenges for efficient design. To address this challenge, this study introduces a novel computational framework integrating high‐throughput Exact Muffin‐Tin Orbitals with Coherent Potential Approximation (EMTO‐CPA) calculations, Copula entropy‐based feature selection, and machine learning (ML) to accelerate RMPEA development. Focusing on V‐Nb‐Ta ternary alloys, a comprehensive dataset of elastic properties for 4485 different compositions is constructed using EMTO‐CPA, achieving accuracy comparable to traditional the special quasi‐random structure (SQS) methods with significantly reduced computational cost. A Random Forest ML model, trained on Copula entropy‐selected features, predicted elastic constants (<jats:italic>C</jats:italic><jats:sub>11</jats:sub>, <jats:italic>C</jats:italic><jats:sub>12</jats:sub>, <jats:italic>E</jats:italic>) with high accuracy (R<jats:sup>2</jats:sup> &gt; 92%), and <jats:italic>C</jats:italic><jats:sub>44</jats:sub> with good accuracy (R<jats:sup>2</jats:sup> ≈ 88%). Experimental synthesis and characterization of selected V‐Nb‐Ta alloys validated the predictions, confirming the trend of elastic modulus with varying Ta content. This integrated approach not only overcomes the limitations of conventional computational methods but also provides a scalable pipeline for designing RMPEAs tailored for extreme environments.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202500784\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500784","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

耐火多主元素合金(rmpea)由于其优异的机械稳定性而成为高温应用的有前途的材料,但其巨大的成分空间为高效设计带来了挑战。为了应对这一挑战,本研究引入了一种新的计算框架,将高通量的精确松饼-锡轨道与相干势近似(EMTO - CPA)计算、基于Copula熵的特征选择和机器学习(ML)集成在一起,以加速RMPEA的开发。以V‐Nb‐Ta三元合金为研究对象,利用EMTO‐CPA构建了4485种不同成分的弹性性能综合数据集,其精度可与传统的特殊准随机结构(SQS)方法相比较,同时显著降低了计算成本。基于Copula熵选择特征训练的Random Forest ML模型预测弹性常数(C11, C12, E)的准确率较高(R2≈92%),C44的准确率较高(R2≈88%)。选定的V - Nb - Ta合金的实验合成和表征验证了预测,证实了弹性模量随Ta含量变化的趋势。这种集成方法不仅克服了传统计算方法的局限性,而且为设计适合极端环境的rmpea提供了可扩展的管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High‐Throughput Calculation and Machine Learning‐Assisted Prediction of the Mechanical Properties of Refractory Multi‐Principal Element Alloys
Refractory multi‐principal element alloys (RMPEAs) are promising materials for high‐temperature applications due to their exceptional mechanical stability, yet their vast compositional space poses challenges for efficient design. To address this challenge, this study introduces a novel computational framework integrating high‐throughput Exact Muffin‐Tin Orbitals with Coherent Potential Approximation (EMTO‐CPA) calculations, Copula entropy‐based feature selection, and machine learning (ML) to accelerate RMPEA development. Focusing on V‐Nb‐Ta ternary alloys, a comprehensive dataset of elastic properties for 4485 different compositions is constructed using EMTO‐CPA, achieving accuracy comparable to traditional the special quasi‐random structure (SQS) methods with significantly reduced computational cost. A Random Forest ML model, trained on Copula entropy‐selected features, predicted elastic constants (C11, C12, E) with high accuracy (R2 > 92%), and C44 with good accuracy (R2 ≈ 88%). Experimental synthesis and characterization of selected V‐Nb‐Ta alloys validated the predictions, confirming the trend of elastic modulus with varying Ta content. This integrated approach not only overcomes the limitations of conventional computational methods but also provides a scalable pipeline for designing RMPEAs tailored for extreme environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信