基于半监督学习的土地覆盖时空监测

IF 4.4
Boris Flach;Tomáš Dlask;Lukáš Brodský
{"title":"基于半监督学习的土地覆盖时空监测","authors":"Boris Flach;Tomáš Dlask;Lukáš Brodský","doi":"10.1109/LGRS.2025.3600458","DOIUrl":null,"url":null,"abstract":"We consider the task of spatio-temporal landcover monitoring and formulate it as follows. Given a time sequence of multispectral satellite images of an area of interest (AOI), we want to predict a corresponding sequence of semantic segmentations with segment labels representing landcover types. We propose to combine asymmetric UNets (achieving super-resolution segmentation) with Markov chain models to account for both spatial and temporal dependencies. Such models cannot be trained in a supervised manner, as obtaining dense spatio-temporal annotations for satellite image time sequences is infeasible. We therefore focus on the challenge of their semi-supervised training. The proposed approach is evaluated on the task of forest monitoring in a national park in the Czech Republic, which suffers from a severe forest dieback due to droughts and bark beetle outbreaks. We achieve 83 % (90 %) prediction accuracy in this challenging task.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-Supervised Learning for Spatio-Temporal Landcover Monitoring\",\"authors\":\"Boris Flach;Tomáš Dlask;Lukáš Brodský\",\"doi\":\"10.1109/LGRS.2025.3600458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the task of spatio-temporal landcover monitoring and formulate it as follows. Given a time sequence of multispectral satellite images of an area of interest (AOI), we want to predict a corresponding sequence of semantic segmentations with segment labels representing landcover types. We propose to combine asymmetric UNets (achieving super-resolution segmentation) with Markov chain models to account for both spatial and temporal dependencies. Such models cannot be trained in a supervised manner, as obtaining dense spatio-temporal annotations for satellite image time sequences is infeasible. We therefore focus on the challenge of their semi-supervised training. The proposed approach is evaluated on the task of forest monitoring in a national park in the Czech Republic, which suffers from a severe forest dieback due to droughts and bark beetle outbreaks. We achieve 83 % (90 %) prediction accuracy in this challenging task.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11129670/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11129670/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑到土地覆盖时空监测的任务,并将其制定如下:给定一个感兴趣区域(AOI)的多光谱卫星图像的时间序列,我们想用表示土地覆盖类型的段标签来预测相应的语义分割序列。我们建议将非对称unet(实现超分辨率分割)与马尔可夫链模型结合起来,以考虑空间和时间依赖性。由于无法获得卫星图像时间序列的密集时空注释,这种模型无法以监督的方式进行训练。因此,我们专注于他们的半监督训练的挑战。在捷克共和国一个国家公园的森林监测任务中对拟议的方法进行了评估,该公园由于干旱和树皮甲虫的爆发而遭受严重的森林枯死。在这个具有挑战性的任务中,我们的预测准确率达到了83%(90%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-Supervised Learning for Spatio-Temporal Landcover Monitoring
We consider the task of spatio-temporal landcover monitoring and formulate it as follows. Given a time sequence of multispectral satellite images of an area of interest (AOI), we want to predict a corresponding sequence of semantic segmentations with segment labels representing landcover types. We propose to combine asymmetric UNets (achieving super-resolution segmentation) with Markov chain models to account for both spatial and temporal dependencies. Such models cannot be trained in a supervised manner, as obtaining dense spatio-temporal annotations for satellite image time sequences is infeasible. We therefore focus on the challenge of their semi-supervised training. The proposed approach is evaluated on the task of forest monitoring in a national park in the Czech Republic, which suffers from a severe forest dieback due to droughts and bark beetle outbreaks. We achieve 83 % (90 %) prediction accuracy in this challenging task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信