{"title":"h型叶理上的局部不变量和次拉普拉斯算子的几何性质","authors":"Wolfram Bauer , Irina Markina , Abdellah Laaroussi , Sylvie Vega-Molino","doi":"10.1016/j.na.2025.113934","DOIUrl":null,"url":null,"abstract":"<div><div><span><math><mi>H</mi></math></span>-type foliations <span><math><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>)</mo></mrow></math></span> are studied in the framework of sub-Riemannian geometry with bracket generating distribution defined as the bundle transversal to the fibers. Equipping <span><math><mi>M</mi></math></span> with the Bott connection we consider the scalar horizontal curvature <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span> as well as a new local invariant <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>V</mi></mrow></msub></math></span> induced from the vertical distribution. We extend recent results on the small-time asymptotics of the sub-Riemannian heat kernel on quaternion-contact (qc-)manifolds due to A. Laaroussi and we express the second heat invariant in sub-Riemannian geometry as a linear combination of <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>V</mi></mrow></msub></math></span>. The use of an analog to normal coordinates in Riemannian geometry that are well-adapted to the geometric structure of <span><math><mi>H</mi></math></span>-type foliations allows us to consider the pull-back of Korányi balls to <span><math><mi>M</mi></math></span>. We explicitly obtain the first three terms in the asymptotic expansion of their Popp volume for small radii. Finally, we address the question of when <span><math><mi>M</mi></math></span> is locally isometric as a sub-Riemannian manifold to its <span><math><mi>H</mi></math></span>-type tangent group.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113934"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local invariants and geometry of the sub-Laplacian on H-type foliations\",\"authors\":\"Wolfram Bauer , Irina Markina , Abdellah Laaroussi , Sylvie Vega-Molino\",\"doi\":\"10.1016/j.na.2025.113934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span><math><mi>H</mi></math></span>-type foliations <span><math><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>)</mo></mrow></math></span> are studied in the framework of sub-Riemannian geometry with bracket generating distribution defined as the bundle transversal to the fibers. Equipping <span><math><mi>M</mi></math></span> with the Bott connection we consider the scalar horizontal curvature <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span> as well as a new local invariant <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>V</mi></mrow></msub></math></span> induced from the vertical distribution. We extend recent results on the small-time asymptotics of the sub-Riemannian heat kernel on quaternion-contact (qc-)manifolds due to A. Laaroussi and we express the second heat invariant in sub-Riemannian geometry as a linear combination of <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>V</mi></mrow></msub></math></span>. The use of an analog to normal coordinates in Riemannian geometry that are well-adapted to the geometric structure of <span><math><mi>H</mi></math></span>-type foliations allows us to consider the pull-back of Korányi balls to <span><math><mi>M</mi></math></span>. We explicitly obtain the first three terms in the asymptotic expansion of their Popp volume for small radii. Finally, we address the question of when <span><math><mi>M</mi></math></span> is locally isometric as a sub-Riemannian manifold to its <span><math><mi>H</mi></math></span>-type tangent group.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"262 \",\"pages\":\"Article 113934\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001865\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001865","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Local invariants and geometry of the sub-Laplacian on H-type foliations
-type foliations are studied in the framework of sub-Riemannian geometry with bracket generating distribution defined as the bundle transversal to the fibers. Equipping with the Bott connection we consider the scalar horizontal curvature as well as a new local invariant induced from the vertical distribution. We extend recent results on the small-time asymptotics of the sub-Riemannian heat kernel on quaternion-contact (qc-)manifolds due to A. Laaroussi and we express the second heat invariant in sub-Riemannian geometry as a linear combination of and . The use of an analog to normal coordinates in Riemannian geometry that are well-adapted to the geometric structure of -type foliations allows us to consider the pull-back of Korányi balls to . We explicitly obtain the first three terms in the asymptotic expansion of their Popp volume for small radii. Finally, we address the question of when is locally isometric as a sub-Riemannian manifold to its -type tangent group.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.