低能有效哈密顿量和倒置高温碲化纳米线的末端态

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Rui Li (李睿)
{"title":"低能有效哈密顿量和倒置高温碲化纳米线的末端态","authors":"Rui Li (李睿)","doi":"10.1016/j.physe.2025.116354","DOIUrl":null,"url":null,"abstract":"<div><div>The band inversion transition in a cylindrical HgTe nanowire is inducible via varying the nanowire radius. Here we derive the low-energy effective Hamiltonian describing the band structure of the HgTe nanowire close to the fundamental band gap. Because both the <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> subbands have quadratic dependence on <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span> when the gap closes, we need to consider at least three subbands, i.e., the <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> subbands, in building the effective Hamiltonian. The resulting effective Hamiltonian is block diagonal and each block is a 3 × 3 matrix. End states are found in the inverted regime when we solve the effective Hamiltonian with open boundary condition.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"174 ","pages":"Article 116354"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-energy effective Hamiltonian and end states of an inverted HgTe nanowire\",\"authors\":\"Rui Li (李睿)\",\"doi\":\"10.1016/j.physe.2025.116354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The band inversion transition in a cylindrical HgTe nanowire is inducible via varying the nanowire radius. Here we derive the low-energy effective Hamiltonian describing the band structure of the HgTe nanowire close to the fundamental band gap. Because both the <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> subbands have quadratic dependence on <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span> when the gap closes, we need to consider at least three subbands, i.e., the <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> subbands, in building the effective Hamiltonian. The resulting effective Hamiltonian is block diagonal and each block is a 3 × 3 matrix. End states are found in the inverted regime when we solve the effective Hamiltonian with open boundary condition.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"174 \",\"pages\":\"Article 116354\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947725001845\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725001845","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通过改变纳米线半径,可以诱导圆柱形高温碲化镓纳米线的能带反转跃迁。在这里,我们导出了描述接近基本带隙的HgTe纳米线的能带结构的低能有效哈密顿量。由于E1和H1子带在间隙闭合时都对kz具有二次依赖,因此在构建有效哈密顿量时,我们需要考虑至少三个子带,即E1、H1和H2子带。得到的有效哈密顿量是块对角线,每个块是一个3 × 3矩阵。在解开边界条件下的有效哈密顿量时,得到了倒区域的终态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-energy effective Hamiltonian and end states of an inverted HgTe nanowire
The band inversion transition in a cylindrical HgTe nanowire is inducible via varying the nanowire radius. Here we derive the low-energy effective Hamiltonian describing the band structure of the HgTe nanowire close to the fundamental band gap. Because both the E1 and H1 subbands have quadratic dependence on kz when the gap closes, we need to consider at least three subbands, i.e., the E1, H1, and H2 subbands, in building the effective Hamiltonian. The resulting effective Hamiltonian is block diagonal and each block is a 3 × 3 matrix. End states are found in the inverted regime when we solve the effective Hamiltonian with open boundary condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信