缓解反射率-荧光(R2F)关系中的黑土问题:一种基于土壤调整反射率的SIF降尺度方法

IF 11.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Peiqi Yang , Zhigang Liu , Dalei Han , Runfei Zhang , Bastian Siegmann , Jing Liu , Huarong Zhao , Uwe Rascher , Jing M. Chen , Christiaan van der Tol
{"title":"缓解反射率-荧光(R2F)关系中的黑土问题:一种基于土壤调整反射率的SIF降尺度方法","authors":"Peiqi Yang ,&nbsp;Zhigang Liu ,&nbsp;Dalei Han ,&nbsp;Runfei Zhang ,&nbsp;Bastian Siegmann ,&nbsp;Jing Liu ,&nbsp;Huarong Zhao ,&nbsp;Uwe Rascher ,&nbsp;Jing M. Chen ,&nbsp;Christiaan van der Tol","doi":"10.1016/j.rse.2025.114998","DOIUrl":null,"url":null,"abstract":"<div><div>Solar-induced chlorophyll fluorescence (SIF) is an effective probe for photosynthesis, but this remote sensing signal is affected by multiple factors, including radiation intensity, canopy structure, sun-observer geometry, and leaf physiological status. The complex interplay among these factors causes substantial discrepancies among top-of-canopy (TOC) SIF, leaf-level average SIF and actual photosynthetic activity. Downscaling TOC SIF to the leaf-level and decoupling structural and physiological information remain major challenges in the use of SIF signals for remote sensing of photosynthesis. To address these challenges, the R2F (reflectance-to-fluorescence) theory was developed, grounded in the similarity in radiative transfer processes governing SIF and reflectance. This theory establishes a physical relationship between near-infrared reflectance (<span><math><msub><mi>R</mi><mi>nir</mi></msub></math></span>) and the far-red SIF scattering coefficient (<span><math><msub><mi>σ</mi><mi>F</mi></msub></math></span>). On this basis, SIF signals can be scaled from the canopy to the leaf level by normalizing <span><math><msub><mi>σ</mi><mi>F</mi></msub></math></span>, estimated from reflectance as <span><math><mspace></mspace><msub><mi>σ</mi><mi>F</mi></msub><mo>=</mo><msub><mi>R</mi><mi>nir</mi></msub><mo>/</mo><msub><mi>i</mi><mn>0</mn></msub></math></span>, where <span><math><msub><mi>i</mi><mn>0</mn></msub></math></span> denotes canopy interceptance. However, the original R2F formulation assumes a non-reflective soil. This simplification breaks down in sparse canopies, where soil contributions are non-negligible—an issue referred to as the “black-soil problem”. Soil enhances both <span><math><msub><mi>R</mi><mi>nir</mi></msub></math></span> and <span><math><msub><mi>σ</mi><mi>F</mi></msub></math></span>, distorting their intrinsic relationship. In this study, we show that soil effects manifest through two main mechanisms: (1) direct soil reflection, which significantly increases <span><math><msub><mi>R</mi><mi>nir</mi></msub></math></span> but has minimal impact on <span><math><msub><mi>σ</mi><mi>F</mi></msub></math></span>, and (2) soil–vegetation multiple scattering, which affects both <span><math><msub><mi>R</mi><mi>nir</mi></msub></math></span> and <span><math><msub><mi>σ</mi><mi>F</mi></msub></math></span> but tends to have compensatory effects. Consequently, the dominant source of bias in the original R2F relationship is direct soil reflection that contributes to <span><math><msub><mi>R</mi><mi>nir</mi></msub></math></span>—a mechanism that had not been explicitly isolated in previous studies. This finding allows us to narrow down the “black-soil problem” in the R2F framework to the specific impact of soil single scattering on <span><math><msub><mi>R</mi><mi>nir</mi></msub></math></span>. To mitigate this bias, we propose a soil-adjusted R2F (saR2F) method, which estimates the direct soil contribution of <span><math><msub><mi>R</mi><mi>nir</mi></msub></math></span> using TOC red and blue reflectance. Correcting <span><math><msub><mi>R</mi><mi>nir</mi></msub></math></span> for the direct soil reflection results in a robust relationship between <span><math><msub><mi>σ</mi><mi>F</mi></msub></math></span> and soil-adjusted <span><math><msub><mi>R</mi><mi>nir</mi></msub><mspace></mspace><mfenced><mrow><mi>sa</mi><msub><mi>R</mi><mi>nir</mi></msub></mrow></mfenced></math></span>, notably <span><math><msub><mi>σ</mi><mi>F</mi></msub><mo>=</mo><mi>sa</mi><msub><mi>R</mi><mi>nir</mi></msub><mo>/</mo><msub><mi>i</mi><mn>0</mn></msub></math></span>.</div><div>We evaluated the saR2F relationship using one field and two simulated datasets. In the field study, saR2F improved the estimation of <span><math><msub><mi>σ</mi><mi>F</mi></msub></math></span> from TOC reflectance, with R<sup>2</sup> increasing ranging from 0.21 to 0.31 compared to the original R2F. In the two simulations, saR2F consistently outperformed the original R2F, especially under sparse canopy conditions. We also compared saR2F with NDVI-based (NIRv) and FCVI-based R2F approaches. In the available field observations collected under specific conditions (i.e., varying viewing azimuth angles), the three approaches showed similar performance and were better than the original R2F in explaining the viewing-angle dependence of <span><math><msub><mi>σ</mi><mi>F</mi></msub></math></span>. However, across the broader range of simulated scenarios and for estimating the exact <span><math><msub><mi>σ</mi><mi>F</mi></msub></math></span>, saR2F demonstrated better stability than NIRv and FCVI-based R2F methods. The NIRv-based and FCVI-based R2F methods yielded relatively low RMSE (0.092 and 0.075, respectively) but weak explanatory power, with R<sup>2</sup> values below 0.41 for canopies with LAI &lt; 3. In contrast, saR2F achieved a much stronger relationship (R<sup>2</sup> = 0.80) and a low RMSE of 0.044. Furthermore, compared to the NIRv or FCVI-based approaches for R2F corrections, saR2F offers a more physically plausible and interpretable solution that can be applied to angular correction and total SIF estimation. The effective mitigation of the black-soil problem facilitates interpretation of raw SIF observations and enhances the monitoring of photosynthetic activity using SIF.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"330 ","pages":"Article 114998"},"PeriodicalIF":11.4000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating the black-soil problem in the reflectance-to-fluorescence (R2F) relationship: A soil-adjusted reflectance-based approach for downscaling SIF\",\"authors\":\"Peiqi Yang ,&nbsp;Zhigang Liu ,&nbsp;Dalei Han ,&nbsp;Runfei Zhang ,&nbsp;Bastian Siegmann ,&nbsp;Jing Liu ,&nbsp;Huarong Zhao ,&nbsp;Uwe Rascher ,&nbsp;Jing M. Chen ,&nbsp;Christiaan van der Tol\",\"doi\":\"10.1016/j.rse.2025.114998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solar-induced chlorophyll fluorescence (SIF) is an effective probe for photosynthesis, but this remote sensing signal is affected by multiple factors, including radiation intensity, canopy structure, sun-observer geometry, and leaf physiological status. The complex interplay among these factors causes substantial discrepancies among top-of-canopy (TOC) SIF, leaf-level average SIF and actual photosynthetic activity. Downscaling TOC SIF to the leaf-level and decoupling structural and physiological information remain major challenges in the use of SIF signals for remote sensing of photosynthesis. To address these challenges, the R2F (reflectance-to-fluorescence) theory was developed, grounded in the similarity in radiative transfer processes governing SIF and reflectance. This theory establishes a physical relationship between near-infrared reflectance (<span><math><msub><mi>R</mi><mi>nir</mi></msub></math></span>) and the far-red SIF scattering coefficient (<span><math><msub><mi>σ</mi><mi>F</mi></msub></math></span>). On this basis, SIF signals can be scaled from the canopy to the leaf level by normalizing <span><math><msub><mi>σ</mi><mi>F</mi></msub></math></span>, estimated from reflectance as <span><math><mspace></mspace><msub><mi>σ</mi><mi>F</mi></msub><mo>=</mo><msub><mi>R</mi><mi>nir</mi></msub><mo>/</mo><msub><mi>i</mi><mn>0</mn></msub></math></span>, where <span><math><msub><mi>i</mi><mn>0</mn></msub></math></span> denotes canopy interceptance. However, the original R2F formulation assumes a non-reflective soil. This simplification breaks down in sparse canopies, where soil contributions are non-negligible—an issue referred to as the “black-soil problem”. Soil enhances both <span><math><msub><mi>R</mi><mi>nir</mi></msub></math></span> and <span><math><msub><mi>σ</mi><mi>F</mi></msub></math></span>, distorting their intrinsic relationship. In this study, we show that soil effects manifest through two main mechanisms: (1) direct soil reflection, which significantly increases <span><math><msub><mi>R</mi><mi>nir</mi></msub></math></span> but has minimal impact on <span><math><msub><mi>σ</mi><mi>F</mi></msub></math></span>, and (2) soil–vegetation multiple scattering, which affects both <span><math><msub><mi>R</mi><mi>nir</mi></msub></math></span> and <span><math><msub><mi>σ</mi><mi>F</mi></msub></math></span> but tends to have compensatory effects. Consequently, the dominant source of bias in the original R2F relationship is direct soil reflection that contributes to <span><math><msub><mi>R</mi><mi>nir</mi></msub></math></span>—a mechanism that had not been explicitly isolated in previous studies. This finding allows us to narrow down the “black-soil problem” in the R2F framework to the specific impact of soil single scattering on <span><math><msub><mi>R</mi><mi>nir</mi></msub></math></span>. To mitigate this bias, we propose a soil-adjusted R2F (saR2F) method, which estimates the direct soil contribution of <span><math><msub><mi>R</mi><mi>nir</mi></msub></math></span> using TOC red and blue reflectance. Correcting <span><math><msub><mi>R</mi><mi>nir</mi></msub></math></span> for the direct soil reflection results in a robust relationship between <span><math><msub><mi>σ</mi><mi>F</mi></msub></math></span> and soil-adjusted <span><math><msub><mi>R</mi><mi>nir</mi></msub><mspace></mspace><mfenced><mrow><mi>sa</mi><msub><mi>R</mi><mi>nir</mi></msub></mrow></mfenced></math></span>, notably <span><math><msub><mi>σ</mi><mi>F</mi></msub><mo>=</mo><mi>sa</mi><msub><mi>R</mi><mi>nir</mi></msub><mo>/</mo><msub><mi>i</mi><mn>0</mn></msub></math></span>.</div><div>We evaluated the saR2F relationship using one field and two simulated datasets. In the field study, saR2F improved the estimation of <span><math><msub><mi>σ</mi><mi>F</mi></msub></math></span> from TOC reflectance, with R<sup>2</sup> increasing ranging from 0.21 to 0.31 compared to the original R2F. In the two simulations, saR2F consistently outperformed the original R2F, especially under sparse canopy conditions. We also compared saR2F with NDVI-based (NIRv) and FCVI-based R2F approaches. In the available field observations collected under specific conditions (i.e., varying viewing azimuth angles), the three approaches showed similar performance and were better than the original R2F in explaining the viewing-angle dependence of <span><math><msub><mi>σ</mi><mi>F</mi></msub></math></span>. However, across the broader range of simulated scenarios and for estimating the exact <span><math><msub><mi>σ</mi><mi>F</mi></msub></math></span>, saR2F demonstrated better stability than NIRv and FCVI-based R2F methods. The NIRv-based and FCVI-based R2F methods yielded relatively low RMSE (0.092 and 0.075, respectively) but weak explanatory power, with R<sup>2</sup> values below 0.41 for canopies with LAI &lt; 3. In contrast, saR2F achieved a much stronger relationship (R<sup>2</sup> = 0.80) and a low RMSE of 0.044. Furthermore, compared to the NIRv or FCVI-based approaches for R2F corrections, saR2F offers a more physically plausible and interpretable solution that can be applied to angular correction and total SIF estimation. The effective mitigation of the black-soil problem facilitates interpretation of raw SIF observations and enhances the monitoring of photosynthetic activity using SIF.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"330 \",\"pages\":\"Article 114998\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003442572500402X\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003442572500402X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

太阳诱导的叶绿素荧光(SIF)是一种有效的光合作用探测手段,但这种遥感信号受到辐射强度、冠层结构、太阳观测者几何形状和叶片生理状态等多种因素的影响。这些因子之间复杂的相互作用导致了冠顶(TOC) SIF、叶级平均SIF和实际光合活性之间的巨大差异。将TOC SIF信号降阶至叶片水平并解耦结构和生理信息仍然是利用SIF信号进行光合作用遥感的主要挑战。为了解决这些挑战,基于控制SIF和反射率的辐射转移过程的相似性,开发了R2F(反射-荧光)理论。该理论建立了近红外反射率(Rnir)与远红外SIF散射系数(σF)之间的物理关系。在此基础上,通过对σF进行归一化,可以将SIF信号从冠层尺度缩放到叶片水平,由反射率估计为σF=Rnir/i0,其中i0为冠层截距。然而,最初的R2F公式假设土壤不反射。这种简化在稀疏的树冠中就失效了,在那里土壤的贡献是不可忽视的——一个被称为“黑土问题”的问题。土壤提高了Rnir和σF,扭曲了它们的内在关系。研究表明,土壤效应主要表现在两种机制上:(1)土壤直接反射显著增加了Rnir,但对σF的影响很小;(2)土壤-植被多重散射对Rnir和σF都有影响,但往往存在补偿效应。因此,在最初的R2F关系中,偏差的主要来源是直接的土壤反射,这有助于rnir -一个在以前的研究中没有明确分离的机制。这一发现使我们能够将R2F框架中的“黑土问题”缩小到土壤单次散射对Rnir的具体影响。为了减轻这种偏差,我们提出了一种土壤调整R2F (saR2F)方法,该方法使用TOC红蓝反射率来估计Rnir在土壤中的直接贡献。对土壤直接反射的Rnir进行校正,结果表明σF与土壤调整后的RnirsaRnir之间存在较强的关系,特别是σF=saRnir/i0。我们使用一个字段和两个模拟数据集来评估saR2F关系。在野外研究中,saR2F改进了TOC反射率对σF的估计,R2比原始R2F提高了0.21 ~ 0.31。在两个模拟中,saR2F的表现始终优于原始R2F,特别是在稀疏冠层条件下。我们还将saR2F与基于ndvi (NIRv)和基于fcvi的R2F方法进行了比较。在特定条件下(即不同观测方位角下)的实测数据中,三种方法表现出相似的性能,并且在解释σF与观测角度的关系方面优于原始R2F。然而,在更广泛的模拟场景和估算精确的σF时,saR2F比基于NIRv和fcvi的R2F方法表现出更好的稳定性。基于nir的R2F方法和基于fcvi的R2F方法的RMSE相对较低(分别为0.092和0.075),但解释力较弱,对于具有LAI的冠层,R2值低于0.41。相比之下,saR2F实现了更强的关系(R2 = 0.80)和低RMSE 0.044。此外,与基于NIRv或fcvi的R2F校正方法相比,saR2F提供了一种物理上更合理和可解释的解决方案,可用于角度校正和总SIF估计。黑土问题的有效缓解有助于解释原始SIF观测结果,并加强利用SIF对光合活性的监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitigating the black-soil problem in the reflectance-to-fluorescence (R2F) relationship: A soil-adjusted reflectance-based approach for downscaling SIF
Solar-induced chlorophyll fluorescence (SIF) is an effective probe for photosynthesis, but this remote sensing signal is affected by multiple factors, including radiation intensity, canopy structure, sun-observer geometry, and leaf physiological status. The complex interplay among these factors causes substantial discrepancies among top-of-canopy (TOC) SIF, leaf-level average SIF and actual photosynthetic activity. Downscaling TOC SIF to the leaf-level and decoupling structural and physiological information remain major challenges in the use of SIF signals for remote sensing of photosynthesis. To address these challenges, the R2F (reflectance-to-fluorescence) theory was developed, grounded in the similarity in radiative transfer processes governing SIF and reflectance. This theory establishes a physical relationship between near-infrared reflectance (Rnir) and the far-red SIF scattering coefficient (σF). On this basis, SIF signals can be scaled from the canopy to the leaf level by normalizing σF, estimated from reflectance as σF=Rnir/i0, where i0 denotes canopy interceptance. However, the original R2F formulation assumes a non-reflective soil. This simplification breaks down in sparse canopies, where soil contributions are non-negligible—an issue referred to as the “black-soil problem”. Soil enhances both Rnir and σF, distorting their intrinsic relationship. In this study, we show that soil effects manifest through two main mechanisms: (1) direct soil reflection, which significantly increases Rnir but has minimal impact on σF, and (2) soil–vegetation multiple scattering, which affects both Rnir and σF but tends to have compensatory effects. Consequently, the dominant source of bias in the original R2F relationship is direct soil reflection that contributes to Rnir—a mechanism that had not been explicitly isolated in previous studies. This finding allows us to narrow down the “black-soil problem” in the R2F framework to the specific impact of soil single scattering on Rnir. To mitigate this bias, we propose a soil-adjusted R2F (saR2F) method, which estimates the direct soil contribution of Rnir using TOC red and blue reflectance. Correcting Rnir for the direct soil reflection results in a robust relationship between σF and soil-adjusted RnirsaRnir, notably σF=saRnir/i0.
We evaluated the saR2F relationship using one field and two simulated datasets. In the field study, saR2F improved the estimation of σF from TOC reflectance, with R2 increasing ranging from 0.21 to 0.31 compared to the original R2F. In the two simulations, saR2F consistently outperformed the original R2F, especially under sparse canopy conditions. We also compared saR2F with NDVI-based (NIRv) and FCVI-based R2F approaches. In the available field observations collected under specific conditions (i.e., varying viewing azimuth angles), the three approaches showed similar performance and were better than the original R2F in explaining the viewing-angle dependence of σF. However, across the broader range of simulated scenarios and for estimating the exact σF, saR2F demonstrated better stability than NIRv and FCVI-based R2F methods. The NIRv-based and FCVI-based R2F methods yielded relatively low RMSE (0.092 and 0.075, respectively) but weak explanatory power, with R2 values below 0.41 for canopies with LAI < 3. In contrast, saR2F achieved a much stronger relationship (R2 = 0.80) and a low RMSE of 0.044. Furthermore, compared to the NIRv or FCVI-based approaches for R2F corrections, saR2F offers a more physically plausible and interpretable solution that can be applied to angular correction and total SIF estimation. The effective mitigation of the black-soil problem facilitates interpretation of raw SIF observations and enhances the monitoring of photosynthetic activity using SIF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信