基于最小二乘形式的微分算子特征值问题的谱伽辽金方法及其Schur补型实现方法

IF 1.3 Q2 MATHEMATICS, APPLIED
Jiaoxia Huang , Yonghui Qin
{"title":"基于最小二乘形式的微分算子特征值问题的谱伽辽金方法及其Schur补型实现方法","authors":"Jiaoxia Huang ,&nbsp;Yonghui Qin","doi":"10.1016/j.rinam.2025.100633","DOIUrl":null,"url":null,"abstract":"<div><div>The differential operator eigenvalue problems often arise in the field of physics and engineering, such as solid band structure, electron orbitals of atoms or molecules, and quantum bound states. In this paper, the spectral Galerkin method based on a least squares setting is developed for solving the differential operator eigenvalue problems. The proposed scheme leads to a global symmetric positive definite algebraic eigenvalue problem. Two kinds of Schur complement methods are given to deal with the corresponding algebraic equation. Namely, the global block matrix can be decomposed into a local matrix eigenvalue problem. Numerical results are given to verify the effectiveness and high-order accuracy of the proposed scheme. The proposed methods are also effective for solving the three-dimensional problem. We also consider the applications of the proposed methods to solve the eigenvalue problems with a parameter and the <span><math><mrow><mi>g</mi><mi>r</mi><mi>a</mi><mi>d</mi><mrow><mo>(</mo><mi>d</mi><mi>i</mi><mi>v</mi><mo>)</mo></mrow></mrow></math></span>-differential operator eigenvalue problems</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100633"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The spectral Galerkin method for the differential operator eigenvalue problems based on a least-squares form and its Schur complement type implementation methods\",\"authors\":\"Jiaoxia Huang ,&nbsp;Yonghui Qin\",\"doi\":\"10.1016/j.rinam.2025.100633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The differential operator eigenvalue problems often arise in the field of physics and engineering, such as solid band structure, electron orbitals of atoms or molecules, and quantum bound states. In this paper, the spectral Galerkin method based on a least squares setting is developed for solving the differential operator eigenvalue problems. The proposed scheme leads to a global symmetric positive definite algebraic eigenvalue problem. Two kinds of Schur complement methods are given to deal with the corresponding algebraic equation. Namely, the global block matrix can be decomposed into a local matrix eigenvalue problem. Numerical results are given to verify the effectiveness and high-order accuracy of the proposed scheme. The proposed methods are also effective for solving the three-dimensional problem. We also consider the applications of the proposed methods to solve the eigenvalue problems with a parameter and the <span><math><mrow><mi>g</mi><mi>r</mi><mi>a</mi><mi>d</mi><mrow><mo>(</mo><mi>d</mi><mi>i</mi><mi>v</mi><mo>)</mo></mrow></mrow></math></span>-differential operator eigenvalue problems</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"27 \",\"pages\":\"Article 100633\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

微分算子特征值问题经常出现在物理和工程领域,如固体能带结构、原子或分子的电子轨道、量子束缚态等。本文提出了基于最小二乘集的谱伽辽金方法,用于求解微分算子特征值问题。所提出的格式导致了一个全局对称正定代数特征值问题。给出了处理相应代数方程的两种Schur补方法。即,全局分块矩阵可以分解为局部矩阵特征值问题。数值结果验证了该方法的有效性和高阶精度。所提出的方法对于求解三维问题也是有效的。我们还考虑了所提方法在求解带参数特征值问题和梯度(div)-微分算子特征值问题中的应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The spectral Galerkin method for the differential operator eigenvalue problems based on a least-squares form and its Schur complement type implementation methods
The differential operator eigenvalue problems often arise in the field of physics and engineering, such as solid band structure, electron orbitals of atoms or molecules, and quantum bound states. In this paper, the spectral Galerkin method based on a least squares setting is developed for solving the differential operator eigenvalue problems. The proposed scheme leads to a global symmetric positive definite algebraic eigenvalue problem. Two kinds of Schur complement methods are given to deal with the corresponding algebraic equation. Namely, the global block matrix can be decomposed into a local matrix eigenvalue problem. Numerical results are given to verify the effectiveness and high-order accuracy of the proposed scheme. The proposed methods are also effective for solving the three-dimensional problem. We also consider the applications of the proposed methods to solve the eigenvalue problems with a parameter and the grad(div)-differential operator eigenvalue problems
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信