基于多尺度递归主成分分析的化工过程系统故障检测

IF 4.1 Q2 ENGINEERING, CHEMICAL
Oktorifo Gardiola , Abdulhalim Shah Maulud , Muhammad Nawaz , Nabila Farhana Jamaludin
{"title":"基于多尺度递归主成分分析的化工过程系统故障检测","authors":"Oktorifo Gardiola ,&nbsp;Abdulhalim Shah Maulud ,&nbsp;Muhammad Nawaz ,&nbsp;Nabila Farhana Jamaludin","doi":"10.1016/j.dche.2025.100264","DOIUrl":null,"url":null,"abstract":"<div><div>Process monitoring is essential for maintaining operational safety and product quality in chemical industries. Although conventional fault detection techniques are widely used, their static nature often leads to high false alarm rates (FAR) and missed detection rates (MDR) under dynamic conditions. To address these limitations, this study proposes a Multiscale Recursive Principal Component Analysis (MSRPCA)-based fault detection framework that combines multiscale signal decomposition with the adaptive capabilities of Recursive PCA (RPCA). The MSRPCA approach isolates process variations across different frequency bands while continuously updating the Principal Component Analysis (PCA) model using a moving window mechanism. This enables real-time adaptability and enhanced noise resistance. The proposed method is validated using the Tennessee Eastman Process (TEP), a widely used benchmark for chemical process monitoring under a range of fault types, including step, drift, and random variation disturbances. Fault detection performance is quantitatively assessed using FAR and MDR metrics across 20 distinct fault scenarios. The results demonstrate that MSRPCA consistently outperforms traditional techniques, significantly reducing false alarms while improving fault detection accuracy. For instance, in Fault 16, the MDR in the Hotelling’s <em>T</em><sup><em>2</em></sup> (<em>T</em><sup><em>2</em></sup>) chart decreased from 70.5 % (PCA) to 10.5 % (MSRPCA), while the FAR in the Squared Prediction Error (SPE) chart dropped from 21.3 % to 0 %. These findings underscore the robustness and effectiveness of MSRPCA for real-time fault detection in complex, time-varying, and noisy industrial environments.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"16 ","pages":"Article 100264"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault detection using multiscale recursive principal component analysis for chemical process systems\",\"authors\":\"Oktorifo Gardiola ,&nbsp;Abdulhalim Shah Maulud ,&nbsp;Muhammad Nawaz ,&nbsp;Nabila Farhana Jamaludin\",\"doi\":\"10.1016/j.dche.2025.100264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Process monitoring is essential for maintaining operational safety and product quality in chemical industries. Although conventional fault detection techniques are widely used, their static nature often leads to high false alarm rates (FAR) and missed detection rates (MDR) under dynamic conditions. To address these limitations, this study proposes a Multiscale Recursive Principal Component Analysis (MSRPCA)-based fault detection framework that combines multiscale signal decomposition with the adaptive capabilities of Recursive PCA (RPCA). The MSRPCA approach isolates process variations across different frequency bands while continuously updating the Principal Component Analysis (PCA) model using a moving window mechanism. This enables real-time adaptability and enhanced noise resistance. The proposed method is validated using the Tennessee Eastman Process (TEP), a widely used benchmark for chemical process monitoring under a range of fault types, including step, drift, and random variation disturbances. Fault detection performance is quantitatively assessed using FAR and MDR metrics across 20 distinct fault scenarios. The results demonstrate that MSRPCA consistently outperforms traditional techniques, significantly reducing false alarms while improving fault detection accuracy. For instance, in Fault 16, the MDR in the Hotelling’s <em>T</em><sup><em>2</em></sup> (<em>T</em><sup><em>2</em></sup>) chart decreased from 70.5 % (PCA) to 10.5 % (MSRPCA), while the FAR in the Squared Prediction Error (SPE) chart dropped from 21.3 % to 0 %. These findings underscore the robustness and effectiveness of MSRPCA for real-time fault detection in complex, time-varying, and noisy industrial environments.</div></div>\",\"PeriodicalId\":72815,\"journal\":{\"name\":\"Digital Chemical Engineering\",\"volume\":\"16 \",\"pages\":\"Article 100264\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772508125000481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508125000481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在化工行业中,过程监控对于维护操作安全和产品质量至关重要。传统的故障检测技术虽然被广泛应用,但其静态特性往往导致在动态条件下的高虚警率和漏检率。为了解决这些局限性,本研究提出了一种基于多尺度递归主成分分析(MSRPCA)的故障检测框架,该框架将多尺度信号分解与递归主成分分析(RPCA)的自适应能力相结合。MSRPCA方法在使用移动窗口机制不断更新主成分分析(PCA)模型的同时,隔离了不同频带的过程变化。这实现了实时适应性和增强的抗噪声能力。采用田纳西伊士曼过程(TEP)验证了所提出的方法,TEP是一种广泛使用的化学过程监测基准,用于一系列故障类型,包括阶跃,漂移和随机变化干扰。在20个不同的故障场景中,使用FAR和MDR度量对故障检测性能进行定量评估。结果表明,MSRPCA持续优于传统技术,在提高故障检测精度的同时显著减少了误报。例如,在故障16中,Hotelling 's T2 (T2)图中的MDR从70.5% (PCA)下降到10.5% (MSRPCA),而平方预测误差(SPE)图中的FAR从21.3%下降到0%。这些发现强调了MSRPCA在复杂、时变和嘈杂的工业环境中实时故障检测的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault detection using multiscale recursive principal component analysis for chemical process systems
Process monitoring is essential for maintaining operational safety and product quality in chemical industries. Although conventional fault detection techniques are widely used, their static nature often leads to high false alarm rates (FAR) and missed detection rates (MDR) under dynamic conditions. To address these limitations, this study proposes a Multiscale Recursive Principal Component Analysis (MSRPCA)-based fault detection framework that combines multiscale signal decomposition with the adaptive capabilities of Recursive PCA (RPCA). The MSRPCA approach isolates process variations across different frequency bands while continuously updating the Principal Component Analysis (PCA) model using a moving window mechanism. This enables real-time adaptability and enhanced noise resistance. The proposed method is validated using the Tennessee Eastman Process (TEP), a widely used benchmark for chemical process monitoring under a range of fault types, including step, drift, and random variation disturbances. Fault detection performance is quantitatively assessed using FAR and MDR metrics across 20 distinct fault scenarios. The results demonstrate that MSRPCA consistently outperforms traditional techniques, significantly reducing false alarms while improving fault detection accuracy. For instance, in Fault 16, the MDR in the Hotelling’s T2 (T2) chart decreased from 70.5 % (PCA) to 10.5 % (MSRPCA), while the FAR in the Squared Prediction Error (SPE) chart dropped from 21.3 % to 0 %. These findings underscore the robustness and effectiveness of MSRPCA for real-time fault detection in complex, time-varying, and noisy industrial environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信