自适应近端不精确梯度框架及其在单天线约束联合波束形成和压缩设计中的应用

IF 5.8 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xilai Fan;Bo Jiang;Ya-Feng Liu
{"title":"自适应近端不精确梯度框架及其在单天线约束联合波束形成和压缩设计中的应用","authors":"Xilai Fan;Bo Jiang;Ya-Feng Liu","doi":"10.1109/TSP.2025.3602976","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an adaptive proximal inexact gradient (APIG) framework for solving a class of nonsmooth composite optimization problems involving function and gradient errors. Unlike existing inexact proximal gradient methods, the proposed framework introduces a new line search condition that jointly adapts to function and gradient errors, enabling adaptive stepsize selection while maintaining theoretical guarantees. Specifically, we prove that the proposed framework achieves an <inline-formula><tex-math>$\\epsilon$</tex-math></inline-formula>-stationary point within <inline-formula><tex-math>$\\mathcal{O}(\\epsilon^{-2})$</tex-math></inline-formula> iterations for nonconvex objectives and an <inline-formula><tex-math>$\\epsilon$</tex-math></inline-formula>-optimal solution within <inline-formula><tex-math>$\\mathcal{O}(\\epsilon^{-1})$</tex-math></inline-formula> iterations for convex cases, matching the best-known complexity in this context. We then custom-apply the APIG framework to an important signal processing problem: the joint beamforming and compression problem (JBCP) with per-antenna power constraints (PAPCs) in cooperative cellular networks. This customized application requires careful exploitation of the problem’s special structure such as the tightness of the semidefinite relaxation (SDR) and the differentiability of the dual. Numerical experiments demonstrate the superior performance of our custom-application over state-of-the-art benchmarks for the JBCP.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"3433-3447"},"PeriodicalIF":5.8000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Proximal Inexact Gradient Framework and Its Application to Per-Antenna Constrained Joint Beamforming and Compression Design\",\"authors\":\"Xilai Fan;Bo Jiang;Ya-Feng Liu\",\"doi\":\"10.1109/TSP.2025.3602976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an adaptive proximal inexact gradient (APIG) framework for solving a class of nonsmooth composite optimization problems involving function and gradient errors. Unlike existing inexact proximal gradient methods, the proposed framework introduces a new line search condition that jointly adapts to function and gradient errors, enabling adaptive stepsize selection while maintaining theoretical guarantees. Specifically, we prove that the proposed framework achieves an <inline-formula><tex-math>$\\\\epsilon$</tex-math></inline-formula>-stationary point within <inline-formula><tex-math>$\\\\mathcal{O}(\\\\epsilon^{-2})$</tex-math></inline-formula> iterations for nonconvex objectives and an <inline-formula><tex-math>$\\\\epsilon$</tex-math></inline-formula>-optimal solution within <inline-formula><tex-math>$\\\\mathcal{O}(\\\\epsilon^{-1})$</tex-math></inline-formula> iterations for convex cases, matching the best-known complexity in this context. We then custom-apply the APIG framework to an important signal processing problem: the joint beamforming and compression problem (JBCP) with per-antenna power constraints (PAPCs) in cooperative cellular networks. This customized application requires careful exploitation of the problem’s special structure such as the tightness of the semidefinite relaxation (SDR) and the differentiability of the dual. Numerical experiments demonstrate the superior performance of our custom-application over state-of-the-art benchmarks for the JBCP.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"73 \",\"pages\":\"3433-3447\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11145189/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11145189/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个自适应近端不精确梯度(APIG)框架来解决一类涉及函数和梯度误差的非光滑复合优化问题。与现有的不精确近端梯度方法不同,该框架引入了一种新的线搜索条件,该条件可联合适应函数和梯度误差,在保持理论保证的同时实现自适应步长选择。具体地说,我们证明了所提出的框架在$\mathcal{O}(\epsilon^{-2})$迭代中实现了$\epsilon$-平稳点,在$\mathcal{O}(\epsilon^{-1})$迭代中实现了$\epsilon$-最优解,在这种情况下匹配了最著名的复杂性。然后,我们将APIG框架定制应用于一个重要的信号处理问题:协同蜂窝网络中具有每天线功率约束(PAPCs)的联合波束形成和压缩问题(JBCP)。这种定制应用需要仔细利用问题的特殊结构,如半定松弛(SDR)的紧密性和对偶的可微性。数值实验表明,我们的定制应用程序的性能优于JBCP的最先进的基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive Proximal Inexact Gradient Framework and Its Application to Per-Antenna Constrained Joint Beamforming and Compression Design
In this paper, we propose an adaptive proximal inexact gradient (APIG) framework for solving a class of nonsmooth composite optimization problems involving function and gradient errors. Unlike existing inexact proximal gradient methods, the proposed framework introduces a new line search condition that jointly adapts to function and gradient errors, enabling adaptive stepsize selection while maintaining theoretical guarantees. Specifically, we prove that the proposed framework achieves an $\epsilon$-stationary point within $\mathcal{O}(\epsilon^{-2})$ iterations for nonconvex objectives and an $\epsilon$-optimal solution within $\mathcal{O}(\epsilon^{-1})$ iterations for convex cases, matching the best-known complexity in this context. We then custom-apply the APIG framework to an important signal processing problem: the joint beamforming and compression problem (JBCP) with per-antenna power constraints (PAPCs) in cooperative cellular networks. This customized application requires careful exploitation of the problem’s special structure such as the tightness of the semidefinite relaxation (SDR) and the differentiability of the dual. Numerical experiments demonstrate the superior performance of our custom-application over state-of-the-art benchmarks for the JBCP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信