一种新的投影算子在一维以外的Doyle-Fuller-Newman模型有限元半离散误差分析中的最优收敛性

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Shu Xu, Liqun Cao
{"title":"一种新的投影算子在一维以外的Doyle-Fuller-Newman模型有限元半离散误差分析中的最优收敛性","authors":"Shu Xu, Liqun Cao","doi":"10.1093/imanum/draf065","DOIUrl":null,"url":null,"abstract":"We present a finite element semidiscrete error analysis for the Doyle–Fuller–Newman model, which is the most popular model for lithium-ion batteries. Central to our approach is a novel projection operator designed for the pseudo-($N$+1)-dimensional equation, offering a powerful tool for multiscale equation analysis. Our results bridge a gap in the analysis for dimensions $2 \\le N \\le 3$ and achieve optimal convergence rates of $h+(\\varDelta r)^{2}$. Additionally, we perform a detailed numerical verification, marking the first such validation in this context. By avoiding the change of variables our error analysis can also be extended beyond isothermal conditions.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"9 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal convergence in finite element semidiscrete error analysis of the Doyle–Fuller–Newman model beyond one dimension with a novel projection operator\",\"authors\":\"Shu Xu, Liqun Cao\",\"doi\":\"10.1093/imanum/draf065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a finite element semidiscrete error analysis for the Doyle–Fuller–Newman model, which is the most popular model for lithium-ion batteries. Central to our approach is a novel projection operator designed for the pseudo-($N$+1)-dimensional equation, offering a powerful tool for multiscale equation analysis. Our results bridge a gap in the analysis for dimensions $2 \\\\le N \\\\le 3$ and achieve optimal convergence rates of $h+(\\\\varDelta r)^{2}$. Additionally, we perform a detailed numerical verification, marking the first such validation in this context. By avoiding the change of variables our error analysis can also be extended beyond isothermal conditions.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf065\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf065","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文对锂离子电池最常用的模型Doyle-Fuller-Newman模型进行了有限元半离散误差分析。该方法的核心是为伪($N$+1)维方程设计的一种新的投影算子,为多尺度方程分析提供了一个强大的工具。我们的结果弥补了维度$2 \le N \le 3$的分析空白,并实现了$h+(\varDelta r)^{2}$的最佳收敛率。此外,我们执行了详细的数值验证,标志着这种情况下的第一次验证。通过避免变量的变化,我们的误差分析也可以扩展到等温条件之外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal convergence in finite element semidiscrete error analysis of the Doyle–Fuller–Newman model beyond one dimension with a novel projection operator
We present a finite element semidiscrete error analysis for the Doyle–Fuller–Newman model, which is the most popular model for lithium-ion batteries. Central to our approach is a novel projection operator designed for the pseudo-($N$+1)-dimensional equation, offering a powerful tool for multiscale equation analysis. Our results bridge a gap in the analysis for dimensions $2 \le N \le 3$ and achieve optimal convergence rates of $h+(\varDelta r)^{2}$. Additionally, we perform a detailed numerical verification, marking the first such validation in this context. By avoiding the change of variables our error analysis can also be extended beyond isothermal conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信