纵向/功能数据分位数动态加性模型的统一推理

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Qian Huang, Tao Li, Jinhong You, Liwen Zhang
{"title":"纵向/功能数据分位数动态加性模型的统一推理","authors":"Qian Huang,&nbsp;Tao Li,&nbsp;Jinhong You,&nbsp;Liwen Zhang","doi":"10.1002/cjs.70006","DOIUrl":null,"url":null,"abstract":"<p>We investigate the unified inference of a time-varying additive model under the quantile regression framework, considering both sparse and dense longitudinal or functional data. For convolution-type smoothed objective functions, we propose a two-step method for estimating both the trend and the component functions. Theoretical analysis shows that the two-step estimators share the same asymptotic distribution as the oracle estimators, while the convergence rates and limiting variance functions differ between sparse and dense situations. However, making a subjective choice between these two cases can lead to incorrect statistical inferences. To address this issue, we develop sandwich formulas for variance estimations. This allows us to establish a unified inference without the need to decide whether the data are sparse or dense. Via simulation studies, we assess the finite-sample performance of the proposed methods. Finally, analyses of two different types of real data illustrate our proposed methods.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"53 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified inference for longitudinal/functional data quantile dynamic additive models\",\"authors\":\"Qian Huang,&nbsp;Tao Li,&nbsp;Jinhong You,&nbsp;Liwen Zhang\",\"doi\":\"10.1002/cjs.70006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the unified inference of a time-varying additive model under the quantile regression framework, considering both sparse and dense longitudinal or functional data. For convolution-type smoothed objective functions, we propose a two-step method for estimating both the trend and the component functions. Theoretical analysis shows that the two-step estimators share the same asymptotic distribution as the oracle estimators, while the convergence rates and limiting variance functions differ between sparse and dense situations. However, making a subjective choice between these two cases can lead to incorrect statistical inferences. To address this issue, we develop sandwich formulas for variance estimations. This allows us to establish a unified inference without the need to decide whether the data are sparse or dense. Via simulation studies, we assess the finite-sample performance of the proposed methods. Finally, analyses of two different types of real data illustrate our proposed methods.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":\"53 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.70006\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.70006","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在分位数回归框架下时变加性模型的统一推理,同时考虑了稀疏和密集的纵向或功能数据。对于卷积型平滑目标函数,我们提出了一种两步估计趋势函数和分量函数的方法。理论分析表明,两步估计量与oracle估计量具有相同的渐近分布,而稀疏和密集情况下的收敛速率和极限方差函数不同。然而,在这两种情况之间做出主观选择可能会导致不正确的统计推断。为了解决这个问题,我们开发了用于方差估计的三明治公式。这允许我们建立一个统一的推理,而不需要决定数据是稀疏的还是密集的。通过仿真研究,我们评估了所提出方法的有限样本性能。最后,通过对两种不同类型的实际数据的分析,说明了我们所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unified inference for longitudinal/functional data quantile dynamic additive models

We investigate the unified inference of a time-varying additive model under the quantile regression framework, considering both sparse and dense longitudinal or functional data. For convolution-type smoothed objective functions, we propose a two-step method for estimating both the trend and the component functions. Theoretical analysis shows that the two-step estimators share the same asymptotic distribution as the oracle estimators, while the convergence rates and limiting variance functions differ between sparse and dense situations. However, making a subjective choice between these two cases can lead to incorrect statistical inferences. To address this issue, we develop sandwich formulas for variance estimations. This allows us to establish a unified inference without the need to decide whether the data are sparse or dense. Via simulation studies, we assess the finite-sample performance of the proposed methods. Finally, analyses of two different types of real data illustrate our proposed methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics. The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信