{"title":"具有主题和时间特定协变量的纵向数据的噪声矩阵补全","authors":"Zhaohan Sun, Yeying Zhu, Joel A. Dubin","doi":"10.1002/cjs.70002","DOIUrl":null,"url":null,"abstract":"<p>In this article, we consider the imputation of missing responses in a longitudinal dataset via matrix completion. We propose a fixed-effect, longitudinal, low-rank model that incorporates both subject-specific and time-specific covariates. To solve the optimization problem, a two-step optimization algorithm is proposed, which provides good statistical properties for the estimation of the fixed effects and the low-rank term. In a theoretical investigation, the non-asymptotic error bounds on the fixed effects and low-rank term are presented. We illustrate the finite-sample performance of the proposed algorithm via simulation studies, and apply our method to a power plant SO<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_2 $$</annotation>\n </semantics></math> emissions dataset in which the monthly recorded amounts of emissions data on monitors are subject to missingness.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"53 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.70002","citationCount":"0","resultStr":"{\"title\":\"Noisy matrix completion for longitudinal data with subject- and time-specific covariates\",\"authors\":\"Zhaohan Sun, Yeying Zhu, Joel A. Dubin\",\"doi\":\"10.1002/cjs.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we consider the imputation of missing responses in a longitudinal dataset via matrix completion. We propose a fixed-effect, longitudinal, low-rank model that incorporates both subject-specific and time-specific covariates. To solve the optimization problem, a two-step optimization algorithm is proposed, which provides good statistical properties for the estimation of the fixed effects and the low-rank term. In a theoretical investigation, the non-asymptotic error bounds on the fixed effects and low-rank term are presented. We illustrate the finite-sample performance of the proposed algorithm via simulation studies, and apply our method to a power plant SO<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_2 $$</annotation>\\n </semantics></math> emissions dataset in which the monthly recorded amounts of emissions data on monitors are subject to missingness.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":\"53 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.70002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.70002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.70002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Noisy matrix completion for longitudinal data with subject- and time-specific covariates
In this article, we consider the imputation of missing responses in a longitudinal dataset via matrix completion. We propose a fixed-effect, longitudinal, low-rank model that incorporates both subject-specific and time-specific covariates. To solve the optimization problem, a two-step optimization algorithm is proposed, which provides good statistical properties for the estimation of the fixed effects and the low-rank term. In a theoretical investigation, the non-asymptotic error bounds on the fixed effects and low-rank term are presented. We illustrate the finite-sample performance of the proposed algorithm via simulation studies, and apply our method to a power plant SO emissions dataset in which the monthly recorded amounts of emissions data on monitors are subject to missingness.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.