对方便样本重新加权惩罚回归

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Zhuoran Zhang, Olivia Bernstein Morgan, Daniel L. Gillen, for the Alzheimer's Disease Neuroimaging Initiative
{"title":"对方便样本重新加权惩罚回归","authors":"Zhuoran Zhang,&nbsp;Olivia Bernstein Morgan,&nbsp;Daniel L. Gillen,&nbsp;for the Alzheimer's Disease Neuroimaging Initiative","doi":"10.1002/cjs.70005","DOIUrl":null,"url":null,"abstract":"<p>Modern epidemiological studies are often characterized by extensive data collection, which facilitates building high-dimensional predictive models. With large samples often conveniently sampled, weighted penalized regression models are commonly applied to provide improved prediction. In this article, we empirically show that weighted ridge regression models may yield suboptimal results because of the lack of flexibility in the penalty structure. We propose a generalized weighted ridge regression (GWRR) estimation procedure that allows for the adjustment of sampling weights in the penalty structure. We derive the asymptotic properties of the proposed GWRR estimator and provide a computationally efficient closed-form solution. We demonstrate the performance of the proposed GWRR estimator and justify the asymptotic variance via simulation studies. Finally, we illustrate the utility of our proposed estimator through an application to the prediction of mini-mental state examination (MMSE) scores.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"53 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reweighted penalized regression for convenience samples\",\"authors\":\"Zhuoran Zhang,&nbsp;Olivia Bernstein Morgan,&nbsp;Daniel L. Gillen,&nbsp;for the Alzheimer's Disease Neuroimaging Initiative\",\"doi\":\"10.1002/cjs.70005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modern epidemiological studies are often characterized by extensive data collection, which facilitates building high-dimensional predictive models. With large samples often conveniently sampled, weighted penalized regression models are commonly applied to provide improved prediction. In this article, we empirically show that weighted ridge regression models may yield suboptimal results because of the lack of flexibility in the penalty structure. We propose a generalized weighted ridge regression (GWRR) estimation procedure that allows for the adjustment of sampling weights in the penalty structure. We derive the asymptotic properties of the proposed GWRR estimator and provide a computationally efficient closed-form solution. We demonstrate the performance of the proposed GWRR estimator and justify the asymptotic variance via simulation studies. Finally, we illustrate the utility of our proposed estimator through an application to the prediction of mini-mental state examination (MMSE) scores.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":\"53 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.70005\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.70005","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

现代流行病学研究往往以广泛的数据收集为特点,这有利于建立高维预测模型。对于通常方便采样的大样本,加权惩罚回归模型通常用于提供改进的预测。在这篇文章中,我们的经验表明,加权脊回归模型可能会产生次优结果,因为在惩罚结构缺乏灵活性。我们提出了一种广义加权脊回归(GWRR)估计过程,允许在惩罚结构中调整采样权值。我们推导了所提出的GWRR估计量的渐近性质,并提供了一个计算效率高的闭形式解。我们证明了所提出的GWRR估计器的性能,并通过仿真研究证明了渐近方差。最后,我们通过最小精神状态考试(MMSE)分数预测的应用来说明我们提出的估计器的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reweighted penalized regression for convenience samples

Modern epidemiological studies are often characterized by extensive data collection, which facilitates building high-dimensional predictive models. With large samples often conveniently sampled, weighted penalized regression models are commonly applied to provide improved prediction. In this article, we empirically show that weighted ridge regression models may yield suboptimal results because of the lack of flexibility in the penalty structure. We propose a generalized weighted ridge regression (GWRR) estimation procedure that allows for the adjustment of sampling weights in the penalty structure. We derive the asymptotic properties of the proposed GWRR estimator and provide a computationally efficient closed-form solution. We demonstrate the performance of the proposed GWRR estimator and justify the asymptotic variance via simulation studies. Finally, we illustrate the utility of our proposed estimator through an application to the prediction of mini-mental state examination (MMSE) scores.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics. The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信