{"title":"因果推理的样本经验似然方法","authors":"Jingyue Huang, Changbao Wu, Leilei Zeng","doi":"10.1002/cjs.70000","DOIUrl":null,"url":null,"abstract":"<p>Causal inference plays a crucial role in understanding the true impact of interventions, medical treatments, policies, or actions, enabling informed decision making and providing insights into the underlying mechanisms that shape our world. In this article, we establish a framework for the estimation of and inference concerning average treatment effects using a two-sample empirical likelihood function. Two different approaches to incorporating propensity scores are developed. The first approach introduces propensity-score-calibrated constraints in addition to the standard model-calibration constraints; the second approach uses the propensity scores to form weighted versions of the model-calibration constraints. The resulting estimators from both approaches are doubly robust. The limiting distributions of the two-sample empirical likelihood ratio statistics are derived, facilitating the construction of confidence intervals and hypothesis tests for the average treatment effect. Bootstrap methods for constructing sample empirical likelihood ratio confidence intervals are also discussed for both approaches. The finite-sample performance of each method is investigated via simulation studies.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"53 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sample empirical likelihood methods for causal inference\",\"authors\":\"Jingyue Huang, Changbao Wu, Leilei Zeng\",\"doi\":\"10.1002/cjs.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Causal inference plays a crucial role in understanding the true impact of interventions, medical treatments, policies, or actions, enabling informed decision making and providing insights into the underlying mechanisms that shape our world. In this article, we establish a framework for the estimation of and inference concerning average treatment effects using a two-sample empirical likelihood function. Two different approaches to incorporating propensity scores are developed. The first approach introduces propensity-score-calibrated constraints in addition to the standard model-calibration constraints; the second approach uses the propensity scores to form weighted versions of the model-calibration constraints. The resulting estimators from both approaches are doubly robust. The limiting distributions of the two-sample empirical likelihood ratio statistics are derived, facilitating the construction of confidence intervals and hypothesis tests for the average treatment effect. Bootstrap methods for constructing sample empirical likelihood ratio confidence intervals are also discussed for both approaches. The finite-sample performance of each method is investigated via simulation studies.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":\"53 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.70000\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.70000","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Sample empirical likelihood methods for causal inference
Causal inference plays a crucial role in understanding the true impact of interventions, medical treatments, policies, or actions, enabling informed decision making and providing insights into the underlying mechanisms that shape our world. In this article, we establish a framework for the estimation of and inference concerning average treatment effects using a two-sample empirical likelihood function. Two different approaches to incorporating propensity scores are developed. The first approach introduces propensity-score-calibrated constraints in addition to the standard model-calibration constraints; the second approach uses the propensity scores to form weighted versions of the model-calibration constraints. The resulting estimators from both approaches are doubly robust. The limiting distributions of the two-sample empirical likelihood ratio statistics are derived, facilitating the construction of confidence intervals and hypothesis tests for the average treatment effect. Bootstrap methods for constructing sample empirical likelihood ratio confidence intervals are also discussed for both approaches. The finite-sample performance of each method is investigated via simulation studies.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.