Javier F. Montero-Bullón, Javier Martín-González, Rodrigo Ledesma-Amaro, Alberto Jiménez, Rubén M. Buey
{"title":"丝状真菌棉叶Ashbya gossypii中神经节苷类的开创性微生物合成","authors":"Javier F. Montero-Bullón, Javier Martín-González, Rodrigo Ledesma-Amaro, Alberto Jiménez, Rubén M. Buey","doi":"10.1186/s13068-025-02697-4","DOIUrl":null,"url":null,"abstract":"<div><p>Gangliosides are essential glycosphingolipids critical in neurodevelopment and cell signaling. Traditionally sourced from animal tissues, their production raises ethical concerns and faces challenges in scalability and cost. Chemoenzymatic methods have emerged as alternatives but lack flexibility and broad industrial applicability of microbial systems. However, complete microbial biosynthesis remains challenging due to the complexity of reconstructing the biosynthetic pathway in non-native hosts. We report the first successful complete microbial synthesis of gangliosides by engineering the industrial filamentous fungus <i>Ashbya gossypii</i>. Using modular metabolic engineering, we heterologously expressed human and yeast enzymes to reconstruct a functional ganglioside biosynthetic pathway. Pathways for producing activated N-acetylneuraminic acid, lactosylceramide, and sialylated intermediates were integrated, yielding GM3 and GD3 at milligram-per-liter levels. These titers were further enhanced by introducing a heterologous Leloir pathway for galactose metabolism. This work represents a foundational advance in microbial glycoengineering, offering a scalable, animal-free microbial platform for ganglioside production with broad applications.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-025-02697-4","citationCount":"0","resultStr":"{\"title\":\"Pioneering microbial synthesis of gangliosides in the filamentous fungus Ashbya gossypii\",\"authors\":\"Javier F. Montero-Bullón, Javier Martín-González, Rodrigo Ledesma-Amaro, Alberto Jiménez, Rubén M. Buey\",\"doi\":\"10.1186/s13068-025-02697-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gangliosides are essential glycosphingolipids critical in neurodevelopment and cell signaling. Traditionally sourced from animal tissues, their production raises ethical concerns and faces challenges in scalability and cost. Chemoenzymatic methods have emerged as alternatives but lack flexibility and broad industrial applicability of microbial systems. However, complete microbial biosynthesis remains challenging due to the complexity of reconstructing the biosynthetic pathway in non-native hosts. We report the first successful complete microbial synthesis of gangliosides by engineering the industrial filamentous fungus <i>Ashbya gossypii</i>. Using modular metabolic engineering, we heterologously expressed human and yeast enzymes to reconstruct a functional ganglioside biosynthetic pathway. Pathways for producing activated N-acetylneuraminic acid, lactosylceramide, and sialylated intermediates were integrated, yielding GM3 and GD3 at milligram-per-liter levels. These titers were further enhanced by introducing a heterologous Leloir pathway for galactose metabolism. This work represents a foundational advance in microbial glycoengineering, offering a scalable, animal-free microbial platform for ganglioside production with broad applications.</p></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-025-02697-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-025-02697-4\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02697-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Pioneering microbial synthesis of gangliosides in the filamentous fungus Ashbya gossypii
Gangliosides are essential glycosphingolipids critical in neurodevelopment and cell signaling. Traditionally sourced from animal tissues, their production raises ethical concerns and faces challenges in scalability and cost. Chemoenzymatic methods have emerged as alternatives but lack flexibility and broad industrial applicability of microbial systems. However, complete microbial biosynthesis remains challenging due to the complexity of reconstructing the biosynthetic pathway in non-native hosts. We report the first successful complete microbial synthesis of gangliosides by engineering the industrial filamentous fungus Ashbya gossypii. Using modular metabolic engineering, we heterologously expressed human and yeast enzymes to reconstruct a functional ganglioside biosynthetic pathway. Pathways for producing activated N-acetylneuraminic acid, lactosylceramide, and sialylated intermediates were integrated, yielding GM3 and GD3 at milligram-per-liter levels. These titers were further enhanced by introducing a heterologous Leloir pathway for galactose metabolism. This work represents a foundational advance in microbial glycoengineering, offering a scalable, animal-free microbial platform for ganglioside production with broad applications.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis