\((\alpha _1(\cdot ), \ldots , \alpha _N(\cdot ))\) -Laplacian-Schrödinger-Kirchhoff系统的三个弱解

IF 1.6 3区 数学 Q1 MATHEMATICS
Ahmed Ahmed, Mohamed Saad Bouh Elemine Vall, Taghi Ahmedatt
{"title":"\\((\\alpha _1(\\cdot ), \\ldots , \\alpha _N(\\cdot ))\\) -Laplacian-Schrödinger-Kirchhoff系统的三个弱解","authors":"Ahmed Ahmed,&nbsp;Mohamed Saad Bouh Elemine Vall,&nbsp;Taghi Ahmedatt","doi":"10.1007/s13324-025-01120-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the existence of multiple weak solutions for a Schrödinger-Kirchhoff type elliptic system involving nonlocal <span>\\((\\alpha _1(\\cdot ), \\ldots , \\alpha _N(\\cdot ))\\)</span>-Laplacian operator. The system is modeled as follows: </p><div><div><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} \\mathfrak {M}_i\\left( \\int _{\\mathbb {R}^N}\\frac{1}{\\alpha _{i}(y)}|\\nabla u_{i}|^{\\alpha _{i}(y)} dy+\\int _{\\mathbb {R}^N}\\frac{\\mathcal {V}_{i}(y)}{\\alpha _{i}(y)}| u_{i}|^{\\alpha _{i}(y)} dy\\right) \\Big (-\\Delta _{\\alpha _{i}(\\cdot )} u_{i} +\\mathcal {V}_{i}(y)|u_{i}|^{\\alpha _{i}(y)-2}u_{i}\\Big ) \\\\ \\quad = \\mu \\mathcal {F}_{u_i}(y, u_{1}, \\ldots , u_{N}) + \\nu \\mathcal {G}_{u_i}(y, u_{1}, \\ldots , u_{N}), \\quad \\text {in } \\mathbb {R}^N, \\text { for all } i = 1, \\dots , N,\\\\ (u_{1}, \\ldots , u_{N}) \\in \\mathbb {H}. \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>We apply the three critical points theorem to establish sufficient conditions for the existence of at least three weak solutions under appropriate assumptions on the system’s parameters and nonlinearity terms. This work extends the analysis of elliptic systems involving variable exponent spaces and nonlocal operators, offering novel insights into their mathematical structure and solution properties.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three Weak Solutions of \\\\((\\\\alpha _1(\\\\cdot ), \\\\ldots , \\\\alpha _N(\\\\cdot ))\\\\)-Laplacian-Schrödinger-Kirchhoff Systems\",\"authors\":\"Ahmed Ahmed,&nbsp;Mohamed Saad Bouh Elemine Vall,&nbsp;Taghi Ahmedatt\",\"doi\":\"10.1007/s13324-025-01120-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate the existence of multiple weak solutions for a Schrödinger-Kirchhoff type elliptic system involving nonlocal <span>\\\\((\\\\alpha _1(\\\\cdot ), \\\\ldots , \\\\alpha _N(\\\\cdot ))\\\\)</span>-Laplacian operator. The system is modeled as follows: </p><div><div><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} \\\\mathfrak {M}_i\\\\left( \\\\int _{\\\\mathbb {R}^N}\\\\frac{1}{\\\\alpha _{i}(y)}|\\\\nabla u_{i}|^{\\\\alpha _{i}(y)} dy+\\\\int _{\\\\mathbb {R}^N}\\\\frac{\\\\mathcal {V}_{i}(y)}{\\\\alpha _{i}(y)}| u_{i}|^{\\\\alpha _{i}(y)} dy\\\\right) \\\\Big (-\\\\Delta _{\\\\alpha _{i}(\\\\cdot )} u_{i} +\\\\mathcal {V}_{i}(y)|u_{i}|^{\\\\alpha _{i}(y)-2}u_{i}\\\\Big ) \\\\\\\\ \\\\quad = \\\\mu \\\\mathcal {F}_{u_i}(y, u_{1}, \\\\ldots , u_{N}) + \\\\nu \\\\mathcal {G}_{u_i}(y, u_{1}, \\\\ldots , u_{N}), \\\\quad \\\\text {in } \\\\mathbb {R}^N, \\\\text { for all } i = 1, \\\\dots , N,\\\\\\\\ (u_{1}, \\\\ldots , u_{N}) \\\\in \\\\mathbb {H}. \\\\end{array}\\\\right. } \\\\end{aligned}$$</span></div></div><p>We apply the three critical points theorem to establish sufficient conditions for the existence of at least three weak solutions under appropriate assumptions on the system’s parameters and nonlinearity terms. This work extends the analysis of elliptic systems involving variable exponent spaces and nonlocal operators, offering novel insights into their mathematical structure and solution properties.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01120-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01120-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类涉及非局部的Schrödinger-Kirchhoff型椭圆系统的多个弱解的存在性 \((\alpha _1(\cdot ), \ldots , \alpha _N(\cdot ))\)-拉普拉斯算子。系统建模如下: $$\begin{aligned} {\left\{ \begin{array}{ll} \mathfrak {M}_i\left( \int _{\mathbb {R}^N}\frac{1}{\alpha _{i}(y)}|\nabla u_{i}|^{\alpha _{i}(y)} dy+\int _{\mathbb {R}^N}\frac{\mathcal {V}_{i}(y)}{\alpha _{i}(y)}| u_{i}|^{\alpha _{i}(y)} dy\right) \Big (-\Delta _{\alpha _{i}(\cdot )} u_{i} +\mathcal {V}_{i}(y)|u_{i}|^{\alpha _{i}(y)-2}u_{i}\Big ) \\ \quad = \mu \mathcal {F}_{u_i}(y, u_{1}, \ldots , u_{N}) + \nu \mathcal {G}_{u_i}(y, u_{1}, \ldots , u_{N}), \quad \text {in } \mathbb {R}^N, \text { for all } i = 1, \dots , N,\\ (u_{1}, \ldots , u_{N}) \in \mathbb {H}. \end{array}\right. } \end{aligned}$$应用三个临界点定理,在系统参数和非线性项的适当假设下,建立了系统存在至少三个弱解的充分条件。这项工作扩展了涉及变指数空间和非局部算子的椭圆系统的分析,提供了对其数学结构和解性质的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three Weak Solutions of \((\alpha _1(\cdot ), \ldots , \alpha _N(\cdot ))\)-Laplacian-Schrödinger-Kirchhoff Systems

In this paper, we investigate the existence of multiple weak solutions for a Schrödinger-Kirchhoff type elliptic system involving nonlocal \((\alpha _1(\cdot ), \ldots , \alpha _N(\cdot ))\)-Laplacian operator. The system is modeled as follows:

$$\begin{aligned} {\left\{ \begin{array}{ll} \mathfrak {M}_i\left( \int _{\mathbb {R}^N}\frac{1}{\alpha _{i}(y)}|\nabla u_{i}|^{\alpha _{i}(y)} dy+\int _{\mathbb {R}^N}\frac{\mathcal {V}_{i}(y)}{\alpha _{i}(y)}| u_{i}|^{\alpha _{i}(y)} dy\right) \Big (-\Delta _{\alpha _{i}(\cdot )} u_{i} +\mathcal {V}_{i}(y)|u_{i}|^{\alpha _{i}(y)-2}u_{i}\Big ) \\ \quad = \mu \mathcal {F}_{u_i}(y, u_{1}, \ldots , u_{N}) + \nu \mathcal {G}_{u_i}(y, u_{1}, \ldots , u_{N}), \quad \text {in } \mathbb {R}^N, \text { for all } i = 1, \dots , N,\\ (u_{1}, \ldots , u_{N}) \in \mathbb {H}. \end{array}\right. } \end{aligned}$$

We apply the three critical points theorem to establish sufficient conditions for the existence of at least three weak solutions under appropriate assumptions on the system’s parameters and nonlinearity terms. This work extends the analysis of elliptic systems involving variable exponent spaces and nonlocal operators, offering novel insights into their mathematical structure and solution properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信