含弱因子的高维因子分析

IF 4 3区 经济学 Q1 ECONOMICS
Jungjun Choi , Ming Yuan
{"title":"含弱因子的高维因子分析","authors":"Jungjun Choi ,&nbsp;Ming Yuan","doi":"10.1016/j.jeconom.2025.106086","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the principal components (PC) estimator for high dimensional approximate factor models with weak factors in that the factor loading (<span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>) scales sublinearly in the number <span><math><mi>N</mi></math></span> of cross-section units, i.e., <span><math><mrow><msup><mrow><mi>Λ</mi></mrow><mrow><mn>0</mn><mo>⊤</mo></mrow></msup><msup><mrow><mi>Λ</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>/</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span> is positive definite in the limit for some <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. While the consistency and asymptotic normality of these estimates are by now well known when the factors are strong, i.e., <span><math><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow></math></span>, the statistical properties for weak factors remain less explored. Here, we show that the PC estimator maintains consistency and asymptotic normality for any <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, provided suitable conditions regarding the dependence structure in the noise are met. This complements earlier result by Onatski (2012) that the PC estimator is inconsistent when <span><math><mrow><mi>α</mi><mo>=</mo><mn>0</mn></mrow></math></span>, and the more recent work by Bai and Ng (2023) who established the asymptotic normality of the PC estimator when <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. Our proof strategy integrates the traditional eigendecomposition-based approach for factor models with leave-one-out analysis similar in spirit to those used in matrix completion and other settings. This combination allows us to deal with factors weaker than the former and at the same time relax the incoherence and independence assumptions often associated with the later.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"252 ","pages":"Article 106086"},"PeriodicalIF":4.0000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High dimensional factor analysis with weak factors\",\"authors\":\"Jungjun Choi ,&nbsp;Ming Yuan\",\"doi\":\"10.1016/j.jeconom.2025.106086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the principal components (PC) estimator for high dimensional approximate factor models with weak factors in that the factor loading (<span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>) scales sublinearly in the number <span><math><mi>N</mi></math></span> of cross-section units, i.e., <span><math><mrow><msup><mrow><mi>Λ</mi></mrow><mrow><mn>0</mn><mo>⊤</mo></mrow></msup><msup><mrow><mi>Λ</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>/</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span> is positive definite in the limit for some <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. While the consistency and asymptotic normality of these estimates are by now well known when the factors are strong, i.e., <span><math><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow></math></span>, the statistical properties for weak factors remain less explored. Here, we show that the PC estimator maintains consistency and asymptotic normality for any <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, provided suitable conditions regarding the dependence structure in the noise are met. This complements earlier result by Onatski (2012) that the PC estimator is inconsistent when <span><math><mrow><mi>α</mi><mo>=</mo><mn>0</mn></mrow></math></span>, and the more recent work by Bai and Ng (2023) who established the asymptotic normality of the PC estimator when <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. Our proof strategy integrates the traditional eigendecomposition-based approach for factor models with leave-one-out analysis similar in spirit to those used in matrix completion and other settings. This combination allows us to deal with factors weaker than the former and at the same time relax the incoherence and independence assumptions often associated with the later.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"252 \",\"pages\":\"Article 106086\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030440762500140X\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030440762500140X","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有弱因子的高维近似因子模型的主成分(PC)估计量,其中因子载荷(Λ0)在截面单元数N上呈次线性缩放,即Λ0, Λ0/Nα在某些α∈(0,1)的极限下是正定的。虽然这些估计的一致性和渐近正态性现在是众所周知的,当因素是强的,即,α=1,弱因素的统计性质仍然很少探索。在这里,我们证明了对于任意α∈(0,1),只要满足噪声中相关结构的适当条件,PC估计量保持一致性和渐近正态性。这补充了Onatski(2012)早期的结果,即当α=0时PC估计量是不一致的,以及Bai和Ng(2023)最近的工作,他们建立了当α∈(1/2,1)时PC估计量的渐近正态性。我们的证明策略集成了传统的基于特征分解的因子模型方法,与在矩阵补全和其他设置中使用的类似精神的留一分析。这种组合使我们能够处理比前者更弱的因素,同时放松通常与后者相关的不连贯和独立性假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High dimensional factor analysis with weak factors
This paper studies the principal components (PC) estimator for high dimensional approximate factor models with weak factors in that the factor loading (Λ0) scales sublinearly in the number N of cross-section units, i.e., Λ0Λ0/Nα is positive definite in the limit for some α(0,1). While the consistency and asymptotic normality of these estimates are by now well known when the factors are strong, i.e., α=1, the statistical properties for weak factors remain less explored. Here, we show that the PC estimator maintains consistency and asymptotic normality for any α(0,1), provided suitable conditions regarding the dependence structure in the noise are met. This complements earlier result by Onatski (2012) that the PC estimator is inconsistent when α=0, and the more recent work by Bai and Ng (2023) who established the asymptotic normality of the PC estimator when α(1/2,1). Our proof strategy integrates the traditional eigendecomposition-based approach for factor models with leave-one-out analysis similar in spirit to those used in matrix completion and other settings. This combination allows us to deal with factors weaker than the former and at the same time relax the incoherence and independence assumptions often associated with the later.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信