HPMA稳定CaCO3纳米流体的制备及其在低渗透油藏中的提高采收率潜力

IF 4.6 0 ENERGY & FUELS
Zhixue Huang , Yefei Wang , Jing Wang , Mingchen Ding , Wuhua Chen , Shizhang Cui , Xiaorong Yu
{"title":"HPMA稳定CaCO3纳米流体的制备及其在低渗透油藏中的提高采收率潜力","authors":"Zhixue Huang ,&nbsp;Yefei Wang ,&nbsp;Jing Wang ,&nbsp;Mingchen Ding ,&nbsp;Wuhua Chen ,&nbsp;Shizhang Cui ,&nbsp;Xiaorong Yu","doi":"10.1016/j.geoen.2025.214171","DOIUrl":null,"url":null,"abstract":"<div><div>Nanofluid EOR applications face key challenges including poor stability and clogging in subsurface formations. This study developed a relatively stable CaCO<sub>3</sub>-HPMA nanofluid through hydrolyzed polymaleic anhydride (HPMA) modification method using a one-pot method. The CaCO<sub>3</sub>-HPMA nanofluid was characterized by FT-IR, TG, particle size analysis, SEM, zeta potential revealing spherical calcite and aragonite phase particles with an average diameter of 164 nm. CaCO<sub>3</sub>-HPMA (1000 mg/L) exhibited excellent stability, sustaining a zeta potential exceeding 30 mV after 10 d. The initial median particle size was 164.0 nm, which gradually increased to 201.2 nm after 10 d and reached 314.1 nm after 30 d CaCO<sub>3</sub>-HPMA (1000 mg/L) effectively altered the wettability of oil wet core slices to water wet, reducing the contact angle from 103.1° to 77.9°, lowered oil water interfacial tension to 14 mN/m, and achieved a 20 % emulsification index after 240 h at 60 °C. CaCO<sub>3</sub>-HPMA (1000 mg/L) nanofluid flooding and the secondary water flooding enhanced oil recovery 18.0 % compared to the primary water flooding in low permeability reservoirs. Notably, when formation clogging occurred, CaCO<sub>3</sub>-HPMA nanoparticles were effectively dissolved through acidification, providing a practical and versatile solution for field operations.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"256 ","pages":"Article 214171"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of HPMA stabilized CaCO3 nanofluid and its EOR potential applied in low permeability reservoirs\",\"authors\":\"Zhixue Huang ,&nbsp;Yefei Wang ,&nbsp;Jing Wang ,&nbsp;Mingchen Ding ,&nbsp;Wuhua Chen ,&nbsp;Shizhang Cui ,&nbsp;Xiaorong Yu\",\"doi\":\"10.1016/j.geoen.2025.214171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanofluid EOR applications face key challenges including poor stability and clogging in subsurface formations. This study developed a relatively stable CaCO<sub>3</sub>-HPMA nanofluid through hydrolyzed polymaleic anhydride (HPMA) modification method using a one-pot method. The CaCO<sub>3</sub>-HPMA nanofluid was characterized by FT-IR, TG, particle size analysis, SEM, zeta potential revealing spherical calcite and aragonite phase particles with an average diameter of 164 nm. CaCO<sub>3</sub>-HPMA (1000 mg/L) exhibited excellent stability, sustaining a zeta potential exceeding 30 mV after 10 d. The initial median particle size was 164.0 nm, which gradually increased to 201.2 nm after 10 d and reached 314.1 nm after 30 d CaCO<sub>3</sub>-HPMA (1000 mg/L) effectively altered the wettability of oil wet core slices to water wet, reducing the contact angle from 103.1° to 77.9°, lowered oil water interfacial tension to 14 mN/m, and achieved a 20 % emulsification index after 240 h at 60 °C. CaCO<sub>3</sub>-HPMA (1000 mg/L) nanofluid flooding and the secondary water flooding enhanced oil recovery 18.0 % compared to the primary water flooding in low permeability reservoirs. Notably, when formation clogging occurred, CaCO<sub>3</sub>-HPMA nanoparticles were effectively dissolved through acidification, providing a practical and versatile solution for field operations.</div></div>\",\"PeriodicalId\":100578,\"journal\":{\"name\":\"Geoenergy Science and Engineering\",\"volume\":\"256 \",\"pages\":\"Article 214171\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoenergy Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949891025005299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025005299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

纳米流体EOR应用面临着稳定性差和地下地层堵塞等关键挑战。本研究采用一锅法,通过水解聚马来酸酐(HPMA)改性的方法,制备了相对稳定的CaCO3-HPMA纳米流体。采用FT-IR、TG、粒度分析、SEM、zeta电位等手段对CaCO3-HPMA纳米流体进行表征,发现平均直径为164 nm的球形方解石和文石相颗粒。CaCO3-HPMA (1000 mg / L)表现出出色的稳定性,保持电动电势超过30 mV后10 d。最初的平均粒径为164.0 nm,逐渐增加到201.2 nm, 30 d后10 d和达到314.1 nm CaCO3-HPMA (1000 mg / L)有效地改变了油湿岩心的润湿性片水湿,减少接触角从103.1°到77.9°,降低油水界面张力至14 mN / m, 240 h后,取得了20%的乳化指数60°C。在低渗透油藏中,CaCO3-HPMA (1000 mg/L)纳米流体驱油与二次水驱相比,采收率提高18.0%。值得注意的是,当地层堵塞发生时,CaCO3-HPMA纳米颗粒通过酸化有效溶解,为现场作业提供了实用且通用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Preparation of HPMA stabilized CaCO3 nanofluid and its EOR potential applied in low permeability reservoirs

Preparation of HPMA stabilized CaCO3 nanofluid and its EOR potential applied in low permeability reservoirs
Nanofluid EOR applications face key challenges including poor stability and clogging in subsurface formations. This study developed a relatively stable CaCO3-HPMA nanofluid through hydrolyzed polymaleic anhydride (HPMA) modification method using a one-pot method. The CaCO3-HPMA nanofluid was characterized by FT-IR, TG, particle size analysis, SEM, zeta potential revealing spherical calcite and aragonite phase particles with an average diameter of 164 nm. CaCO3-HPMA (1000 mg/L) exhibited excellent stability, sustaining a zeta potential exceeding 30 mV after 10 d. The initial median particle size was 164.0 nm, which gradually increased to 201.2 nm after 10 d and reached 314.1 nm after 30 d CaCO3-HPMA (1000 mg/L) effectively altered the wettability of oil wet core slices to water wet, reducing the contact angle from 103.1° to 77.9°, lowered oil water interfacial tension to 14 mN/m, and achieved a 20 % emulsification index after 240 h at 60 °C. CaCO3-HPMA (1000 mg/L) nanofluid flooding and the secondary water flooding enhanced oil recovery 18.0 % compared to the primary water flooding in low permeability reservoirs. Notably, when formation clogging occurred, CaCO3-HPMA nanoparticles were effectively dissolved through acidification, providing a practical and versatile solution for field operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信