Di Zhang , Jiusong Ge , Jiashuai Liu , Chunbao Wang , Tieliang Gong , Zeyu Gao , Chen Li
{"title":"计算病理学中检测非分布数据的稳定距离","authors":"Di Zhang , Jiusong Ge , Jiashuai Liu , Chunbao Wang , Tieliang Gong , Zeyu Gao , Chen Li","doi":"10.1016/j.media.2025.103774","DOIUrl":null,"url":null,"abstract":"<div><div>Modern Computational pathology (CPath) models aim to alleviate the burden on pathologists. However, once deployed, these models may generate unreliable predictions when encountering data types not seen during training, potentially causing a trust crisis within the computational pathology community. Out-of-distribution (OOD) detection, acting as a safety measure before model deployment, demonstrates significant promise in ensuring the reliable use of models in real clinical application. However, most existing computational pathology models lack OOD detection mechanisms, and no OOD detection method is specifically designed for this field. In this paper, we propose a novel OOD detection approach called Stability Distance (StaDis), uniquely developed for CPath. StaDis measures the feature gap between an image and its perturbed counterpart. As a plug-and-play module, it requires no retraining and integrates seamlessly with any model. Additionally, for the first time, we explore OOD detection at the whole-slide image (WSI) level within the multiple instance learning (MIL) framework. Then, we design different pathological OOD detection benchmarks covering three real clinical scenarios: patch- and slide-level anomaly tissue detection, rare case mining, and frozen section (FS) detection. Finally, extensive comparative experiments are conducted on these pathological OOD benchmarks. In 38 experiments, our approach achieves SOTA performance in 23 cases and ranks second in 10 experiments. Especially, the AUROC results of StaDis with “Conch” as the backbone improve by 7.91% for patch-based anomaly tissue detection. Our code is available at <span><span>https://github.com/zdipath/StaDis</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"107 ","pages":"Article 103774"},"PeriodicalIF":11.8000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"StaDis: Stability distance to detecting out-of-distribution data in computational pathology\",\"authors\":\"Di Zhang , Jiusong Ge , Jiashuai Liu , Chunbao Wang , Tieliang Gong , Zeyu Gao , Chen Li\",\"doi\":\"10.1016/j.media.2025.103774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modern Computational pathology (CPath) models aim to alleviate the burden on pathologists. However, once deployed, these models may generate unreliable predictions when encountering data types not seen during training, potentially causing a trust crisis within the computational pathology community. Out-of-distribution (OOD) detection, acting as a safety measure before model deployment, demonstrates significant promise in ensuring the reliable use of models in real clinical application. However, most existing computational pathology models lack OOD detection mechanisms, and no OOD detection method is specifically designed for this field. In this paper, we propose a novel OOD detection approach called Stability Distance (StaDis), uniquely developed for CPath. StaDis measures the feature gap between an image and its perturbed counterpart. As a plug-and-play module, it requires no retraining and integrates seamlessly with any model. Additionally, for the first time, we explore OOD detection at the whole-slide image (WSI) level within the multiple instance learning (MIL) framework. Then, we design different pathological OOD detection benchmarks covering three real clinical scenarios: patch- and slide-level anomaly tissue detection, rare case mining, and frozen section (FS) detection. Finally, extensive comparative experiments are conducted on these pathological OOD benchmarks. In 38 experiments, our approach achieves SOTA performance in 23 cases and ranks second in 10 experiments. Especially, the AUROC results of StaDis with “Conch” as the backbone improve by 7.91% for patch-based anomaly tissue detection. Our code is available at <span><span>https://github.com/zdipath/StaDis</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"107 \",\"pages\":\"Article 103774\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841525003202\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525003202","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
StaDis: Stability distance to detecting out-of-distribution data in computational pathology
Modern Computational pathology (CPath) models aim to alleviate the burden on pathologists. However, once deployed, these models may generate unreliable predictions when encountering data types not seen during training, potentially causing a trust crisis within the computational pathology community. Out-of-distribution (OOD) detection, acting as a safety measure before model deployment, demonstrates significant promise in ensuring the reliable use of models in real clinical application. However, most existing computational pathology models lack OOD detection mechanisms, and no OOD detection method is specifically designed for this field. In this paper, we propose a novel OOD detection approach called Stability Distance (StaDis), uniquely developed for CPath. StaDis measures the feature gap between an image and its perturbed counterpart. As a plug-and-play module, it requires no retraining and integrates seamlessly with any model. Additionally, for the first time, we explore OOD detection at the whole-slide image (WSI) level within the multiple instance learning (MIL) framework. Then, we design different pathological OOD detection benchmarks covering three real clinical scenarios: patch- and slide-level anomaly tissue detection, rare case mining, and frozen section (FS) detection. Finally, extensive comparative experiments are conducted on these pathological OOD benchmarks. In 38 experiments, our approach achieves SOTA performance in 23 cases and ranks second in 10 experiments. Especially, the AUROC results of StaDis with “Conch” as the backbone improve by 7.91% for patch-based anomaly tissue detection. Our code is available at https://github.com/zdipath/StaDis.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.