Haichuan Yin , Yan Xu , Xiaochun Zhang , Xu Wang , Peng Yang , Guoxiong Zhan , Yinge Bai , Zhenlei Zhang , Xiangping Zhang
{"title":"[N1111][Triz]-H2O溶剂捕集CO2的热力学模型与分子动力学研究","authors":"Haichuan Yin , Yan Xu , Xiaochun Zhang , Xu Wang , Peng Yang , Guoxiong Zhan , Yinge Bai , Zhenlei Zhang , Xiangping Zhang","doi":"10.1016/j.gce.2025.06.008","DOIUrl":null,"url":null,"abstract":"<div><div>The urgent need to mitigate anthropogenic CO<sub>2</sub> emissions has driven the development of energy-efficient carbon capture systems. This study investigated a [N<sub>1111</sub>][Triz]-H<sub>2</sub>O hybrid solvent for CO<sub>2</sub> capture using integrated experimental and computational approaches. A multiscale methodology combining thermodynamic analysis, phase equilibrium measurements, and molecular dynamics (MD) simulations was employed to elucidate the absorption mechanisms and the composition-property relationships. The thermodynamic analysis, incorporating Henry's law, the non-random two-liquid (NRTL) model for activity coefficients, the Redlich-Kwong equation, and reaction equilibrium constraints, accurately predicted the gas-liquid equilibrium (GLE) behavior, achieving an R<sup>2</sup> of 99.1% and an average absolute relative deviation (AARD) of 7.76%. The [N<sub>1111</sub>][Triz]-H<sub>2</sub>O hybrid solvent exhibits exceptional CO<sub>2</sub> absorption performance, with a capacity of 0.25 mol/mol (at 313.15 K and 0.025 MPa for <em>w</em><sub>IL</sub> = 80%), attributed to synergistic physical-chemical interactions. MD simulations reveal the dynamic CO<sub>2</sub> absorption process in [N<sub>1111</sub>][Triz]-H<sub>2</sub>O hybrid solvents: CO<sub>2</sub> molecules preferentially accumulate at the gas-liquid interface before gradually diffusing into the bulk phase. Increasing the [N<sub>1111</sub>][Triz] content enhances CO<sub>2</sub> absorption capacity by providing more interaction sites, while water modulates interfacial behavior and diffusion kinetics. This research provides in-depth insights into the absorption behaviors of [N<sub>1111</sub>][Triz]-H<sub>2</sub>O hybrid solvents for CO<sub>2</sub>, offering theoretical support for the development of efficient CO<sub>2</sub> capture solvents and highlighting its potential for industrial implementation.</div></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"6 4","pages":"Pages 591-599"},"PeriodicalIF":7.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiscale investigation combining thermodynamic modeling and molecular dynamics study on CO2 capture with [N1111][Triz]-H2O solvent\",\"authors\":\"Haichuan Yin , Yan Xu , Xiaochun Zhang , Xu Wang , Peng Yang , Guoxiong Zhan , Yinge Bai , Zhenlei Zhang , Xiangping Zhang\",\"doi\":\"10.1016/j.gce.2025.06.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The urgent need to mitigate anthropogenic CO<sub>2</sub> emissions has driven the development of energy-efficient carbon capture systems. This study investigated a [N<sub>1111</sub>][Triz]-H<sub>2</sub>O hybrid solvent for CO<sub>2</sub> capture using integrated experimental and computational approaches. A multiscale methodology combining thermodynamic analysis, phase equilibrium measurements, and molecular dynamics (MD) simulations was employed to elucidate the absorption mechanisms and the composition-property relationships. The thermodynamic analysis, incorporating Henry's law, the non-random two-liquid (NRTL) model for activity coefficients, the Redlich-Kwong equation, and reaction equilibrium constraints, accurately predicted the gas-liquid equilibrium (GLE) behavior, achieving an R<sup>2</sup> of 99.1% and an average absolute relative deviation (AARD) of 7.76%. The [N<sub>1111</sub>][Triz]-H<sub>2</sub>O hybrid solvent exhibits exceptional CO<sub>2</sub> absorption performance, with a capacity of 0.25 mol/mol (at 313.15 K and 0.025 MPa for <em>w</em><sub>IL</sub> = 80%), attributed to synergistic physical-chemical interactions. MD simulations reveal the dynamic CO<sub>2</sub> absorption process in [N<sub>1111</sub>][Triz]-H<sub>2</sub>O hybrid solvents: CO<sub>2</sub> molecules preferentially accumulate at the gas-liquid interface before gradually diffusing into the bulk phase. Increasing the [N<sub>1111</sub>][Triz] content enhances CO<sub>2</sub> absorption capacity by providing more interaction sites, while water modulates interfacial behavior and diffusion kinetics. This research provides in-depth insights into the absorption behaviors of [N<sub>1111</sub>][Triz]-H<sub>2</sub>O hybrid solvents for CO<sub>2</sub>, offering theoretical support for the development of efficient CO<sub>2</sub> capture solvents and highlighting its potential for industrial implementation.</div></div>\",\"PeriodicalId\":66474,\"journal\":{\"name\":\"Green Chemical Engineering\",\"volume\":\"6 4\",\"pages\":\"Pages 591-599\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemical Engineering\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266695282500055X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266695282500055X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A multiscale investigation combining thermodynamic modeling and molecular dynamics study on CO2 capture with [N1111][Triz]-H2O solvent
The urgent need to mitigate anthropogenic CO2 emissions has driven the development of energy-efficient carbon capture systems. This study investigated a [N1111][Triz]-H2O hybrid solvent for CO2 capture using integrated experimental and computational approaches. A multiscale methodology combining thermodynamic analysis, phase equilibrium measurements, and molecular dynamics (MD) simulations was employed to elucidate the absorption mechanisms and the composition-property relationships. The thermodynamic analysis, incorporating Henry's law, the non-random two-liquid (NRTL) model for activity coefficients, the Redlich-Kwong equation, and reaction equilibrium constraints, accurately predicted the gas-liquid equilibrium (GLE) behavior, achieving an R2 of 99.1% and an average absolute relative deviation (AARD) of 7.76%. The [N1111][Triz]-H2O hybrid solvent exhibits exceptional CO2 absorption performance, with a capacity of 0.25 mol/mol (at 313.15 K and 0.025 MPa for wIL = 80%), attributed to synergistic physical-chemical interactions. MD simulations reveal the dynamic CO2 absorption process in [N1111][Triz]-H2O hybrid solvents: CO2 molecules preferentially accumulate at the gas-liquid interface before gradually diffusing into the bulk phase. Increasing the [N1111][Triz] content enhances CO2 absorption capacity by providing more interaction sites, while water modulates interfacial behavior and diffusion kinetics. This research provides in-depth insights into the absorption behaviors of [N1111][Triz]-H2O hybrid solvents for CO2, offering theoretical support for the development of efficient CO2 capture solvents and highlighting its potential for industrial implementation.