通过大型语言模型驱动框架和交互式AI代理解锁深度共晶溶剂知识

IF 7.6 Q1 ENGINEERING, CHEMICAL
Xiting Peng , Yi Shen Tew , Kai Zhao , Chi Wang , Ren'ai Li , Shanying Hu , Xiaonan Wang
{"title":"通过大型语言模型驱动框架和交互式AI代理解锁深度共晶溶剂知识","authors":"Xiting Peng ,&nbsp;Yi Shen Tew ,&nbsp;Kai Zhao ,&nbsp;Chi Wang ,&nbsp;Ren'ai Li ,&nbsp;Shanying Hu ,&nbsp;Xiaonan Wang","doi":"10.1016/j.gce.2025.05.006","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence (AI) is playing an important role in advancing green chemical engineering, while the lack of data remains a primary challenge in many fields. Deep eutectic solvents (DESs) are a promising alternative to traditional organic solvents. However, the exploration of new DES formulations has long been constrained by trial-and-error research methods, a preference for familiar formulations, and a lack of easily accessible DES databases. This study proposes a framework driven by large language models (LLMs) for accurately and efficiently extracting data in the DES field, accelerating knowledge discovery. By coordinating LLMs and tools through predefined code paths, we extracted 34,027 data records and 9,215 unique DES formulations from 14,602 research articles, achieving an accuracy of over 90%, thereby creating a comprehensive domain knowledge base. An LLM-driven interactive agent has been deployed on an online platform, further facilitating access to this structured data and enabling researchers to overcome data limitations and accelerate the discovery of new DES formulations.</div></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"6 4","pages":"Pages 572-581"},"PeriodicalIF":7.6000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking deep eutectic solvent knowledge through a large language model-driven framework and an interactive AI agent\",\"authors\":\"Xiting Peng ,&nbsp;Yi Shen Tew ,&nbsp;Kai Zhao ,&nbsp;Chi Wang ,&nbsp;Ren'ai Li ,&nbsp;Shanying Hu ,&nbsp;Xiaonan Wang\",\"doi\":\"10.1016/j.gce.2025.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Artificial intelligence (AI) is playing an important role in advancing green chemical engineering, while the lack of data remains a primary challenge in many fields. Deep eutectic solvents (DESs) are a promising alternative to traditional organic solvents. However, the exploration of new DES formulations has long been constrained by trial-and-error research methods, a preference for familiar formulations, and a lack of easily accessible DES databases. This study proposes a framework driven by large language models (LLMs) for accurately and efficiently extracting data in the DES field, accelerating knowledge discovery. By coordinating LLMs and tools through predefined code paths, we extracted 34,027 data records and 9,215 unique DES formulations from 14,602 research articles, achieving an accuracy of over 90%, thereby creating a comprehensive domain knowledge base. An LLM-driven interactive agent has been deployed on an online platform, further facilitating access to this structured data and enabling researchers to overcome data limitations and accelerate the discovery of new DES formulations.</div></div>\",\"PeriodicalId\":66474,\"journal\":{\"name\":\"Green Chemical Engineering\",\"volume\":\"6 4\",\"pages\":\"Pages 572-581\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemical Engineering\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666952825000433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952825000433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)在推进绿色化学工程中发挥着重要作用,而缺乏数据仍然是许多领域的主要挑战。深共晶溶剂(DESs)是一种很有前途的有机溶剂替代品。然而,对新的DES配方的探索长期以来一直受到试错研究方法、对熟悉配方的偏好以及缺乏易于访问的DES数据库的限制。本研究提出了一个由大型语言模型(llm)驱动的框架,用于准确、高效地提取DES领域的数据,加速知识发现。通过协调llm和工具通过预定义的代码路径,我们从14,602篇研究文章中提取了34,027条数据记录和9,215个独特的DES公式,实现了90%以上的准确率,从而创建了一个全面的领域知识库。一个法学硕士驱动的交互式代理已经部署在一个在线平台上,进一步促进了对这些结构化数据的访问,使研究人员能够克服数据限制,加速发现新的DES配方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unlocking deep eutectic solvent knowledge through a large language model-driven framework and an interactive AI agent

Unlocking deep eutectic solvent knowledge through a large language model-driven framework and an interactive AI agent
Artificial intelligence (AI) is playing an important role in advancing green chemical engineering, while the lack of data remains a primary challenge in many fields. Deep eutectic solvents (DESs) are a promising alternative to traditional organic solvents. However, the exploration of new DES formulations has long been constrained by trial-and-error research methods, a preference for familiar formulations, and a lack of easily accessible DES databases. This study proposes a framework driven by large language models (LLMs) for accurately and efficiently extracting data in the DES field, accelerating knowledge discovery. By coordinating LLMs and tools through predefined code paths, we extracted 34,027 data records and 9,215 unique DES formulations from 14,602 research articles, achieving an accuracy of over 90%, thereby creating a comprehensive domain knowledge base. An LLM-driven interactive agent has been deployed on an online platform, further facilitating access to this structured data and enabling researchers to overcome data limitations and accelerate the discovery of new DES formulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemical Engineering
Green Chemical Engineering Process Chemistry and Technology, Catalysis, Filtration and Separation
CiteScore
11.60
自引率
0.00%
发文量
58
审稿时长
51 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信