DIFReID:用于人员再识别的详细信息融合

IF 3.4 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Xuebing Bai , Jichang Guo , Jin Che
{"title":"DIFReID:用于人员再识别的详细信息融合","authors":"Xuebing Bai ,&nbsp;Jichang Guo ,&nbsp;Jin Che","doi":"10.1016/j.displa.2025.103189","DOIUrl":null,"url":null,"abstract":"<div><div>Person re-identification (ReID) aims to match person images across different scenes in video surveillance. Despite significant progress, existing methods often overlook the importance of multi-scale information and personal belongings, while failing to fully exploit the relationships between images and attributes. These limitations result in underutilization of detailed information, thereby constraining the completeness and discriminative power of person feature representations. To address these challenges, we propose Detail Information Fusion for Person Re-Identification (DIFReID), a novel framework that aims to enhance feature representation by effectively integrating image information and attribute information. Specifically, DIFReID incorporates a multi-scale attention module that combines multi-scale features with attention mechanisms to highlight salient regions and improve the representation of critical details. Furthermore, a refined semantic parsing module integrates semantic regions of personal belongings with human parsing results, effectively capturing personal belongings often omitted in prior approaches. In addition, a cross-modal graph convolutional network module fuses personal attributes with visual features, establishing deeper relationships between images and attributes to generate robust and discriminative representations. Extensive experiments conducted on two benchmark datasets demonstrate that DIFReID achieves state-of-the-art performance, validating its effectiveness in improving both feature completeness and discriminative capability.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"91 ","pages":"Article 103189"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIFReID: Detail Information Fusion for Person Re-Identification\",\"authors\":\"Xuebing Bai ,&nbsp;Jichang Guo ,&nbsp;Jin Che\",\"doi\":\"10.1016/j.displa.2025.103189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Person re-identification (ReID) aims to match person images across different scenes in video surveillance. Despite significant progress, existing methods often overlook the importance of multi-scale information and personal belongings, while failing to fully exploit the relationships between images and attributes. These limitations result in underutilization of detailed information, thereby constraining the completeness and discriminative power of person feature representations. To address these challenges, we propose Detail Information Fusion for Person Re-Identification (DIFReID), a novel framework that aims to enhance feature representation by effectively integrating image information and attribute information. Specifically, DIFReID incorporates a multi-scale attention module that combines multi-scale features with attention mechanisms to highlight salient regions and improve the representation of critical details. Furthermore, a refined semantic parsing module integrates semantic regions of personal belongings with human parsing results, effectively capturing personal belongings often omitted in prior approaches. In addition, a cross-modal graph convolutional network module fuses personal attributes with visual features, establishing deeper relationships between images and attributes to generate robust and discriminative representations. Extensive experiments conducted on two benchmark datasets demonstrate that DIFReID achieves state-of-the-art performance, validating its effectiveness in improving both feature completeness and discriminative capability.</div></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"91 \",\"pages\":\"Article 103189\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938225002264\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225002264","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

人物再识别(ReID)的目的是在视频监控中对不同场景的人物图像进行匹配。尽管取得了重大进展,但现有方法往往忽略了多尺度信息和个人物品的重要性,未能充分利用图像与属性之间的关系。这些限制导致详细信息的利用不足,从而制约了人物特征表示的完备性和判别能力。为了解决这些挑战,我们提出了一种新的框架,旨在通过有效地整合图像信息和属性信息来增强特征表示。具体而言,DIFReID集成了一个多尺度注意模块,该模块将多尺度特征与注意机制相结合,以突出突出区域并改善关键细节的表示。此外,一个改进的语义解析模块将个人物品的语义区域与人工解析结果相结合,有效地捕获了之前方法中经常遗漏的个人物品。此外,跨模态图卷积网络模块将个人属性与视觉特征融合,在图像和属性之间建立更深层次的关系,以生成鲁棒性和判别性的表示。在两个基准数据集上进行的大量实验表明,DIFReID达到了最先进的性能,验证了其在提高特征完备性和判别能力方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DIFReID: Detail Information Fusion for Person Re-Identification
Person re-identification (ReID) aims to match person images across different scenes in video surveillance. Despite significant progress, existing methods often overlook the importance of multi-scale information and personal belongings, while failing to fully exploit the relationships between images and attributes. These limitations result in underutilization of detailed information, thereby constraining the completeness and discriminative power of person feature representations. To address these challenges, we propose Detail Information Fusion for Person Re-Identification (DIFReID), a novel framework that aims to enhance feature representation by effectively integrating image information and attribute information. Specifically, DIFReID incorporates a multi-scale attention module that combines multi-scale features with attention mechanisms to highlight salient regions and improve the representation of critical details. Furthermore, a refined semantic parsing module integrates semantic regions of personal belongings with human parsing results, effectively capturing personal belongings often omitted in prior approaches. In addition, a cross-modal graph convolutional network module fuses personal attributes with visual features, establishing deeper relationships between images and attributes to generate robust and discriminative representations. Extensive experiments conducted on two benchmark datasets demonstrate that DIFReID achieves state-of-the-art performance, validating its effectiveness in improving both feature completeness and discriminative capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信