心脏毒性评估中多任务学习的专家组合

IF 5.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Edoardo Luca Viganò, Mateusz Iwan, Erika Colombo, Davide Ballabio, Alessandra Roncaglioni
{"title":"心脏毒性评估中多任务学习的专家组合","authors":"Edoardo Luca Viganò,&nbsp;Mateusz Iwan,&nbsp;Erika Colombo,&nbsp;Davide Ballabio,&nbsp;Alessandra Roncaglioni","doi":"10.1186/s13321-025-01072-7","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the integration of Artificial Intelligence and Machine Learning methods with biochemical and biomedical research has revolutionized the field of toxicology, significantly advancing our understanding of the toxicological effects of chemicals on biological systems. Cardiovascular diseases remain the leading global cause of death. The constant exposure to multiple chemicals with potential cardiotoxic effects, including environmental contaminants, pesticides, food additives, and drugs, can significantly contribute to these adverse health outcomes. Traditional methods for assessing chemical hazards and their impact on biological function heavily rely on experimental assays and animal studies, which are often time-consuming, resource-intensive, and limited in scalability. To overcome these limitations in silico methods have emerged as indispensable tools in toxicological research, reducing the need for traditional in vivo testing and conserving valuable resources in terms of time and cost. In this study, Artificial Intelligence methods are used as first-tier components within an Integrated Approach to Testing and Assessment. We explored the potential benefits of using Multitask Neural Networks, where multiple levels of cardiotoxicity information are combined to enhance model performance. Multitask learning, based on specific architectures such as Mixture of Experts (MoE), showed promising results and surpasses the performance of single-task baseline models. When predicting a holdout set, multitask model achieved high performance on twelve different endpoints related to cardiotoxicity defined by Adverse Outcome Pathways Network. The best developed model achieved a balanced accuracy of 78%, a sensitivity of 80%, and a specificity of 76% across all endpoints in the holdout set.</p><p>An advanced multitask model was developed to predict cardiotoxicity mechanisms induced by small molecules. The model demonstrates broad mechanistic coverage and achieves performance comparable to, or exceeding, state-of-the-art methods. These results suggest that the model could serve as a valuable first-tier component in advanced New Approach Methodologies for prioritizing chemicals for further testing.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01072-7","citationCount":"0","resultStr":"{\"title\":\"Mixture of experts for multitask learning in cardiotoxicity assessment\",\"authors\":\"Edoardo Luca Viganò,&nbsp;Mateusz Iwan,&nbsp;Erika Colombo,&nbsp;Davide Ballabio,&nbsp;Alessandra Roncaglioni\",\"doi\":\"10.1186/s13321-025-01072-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, the integration of Artificial Intelligence and Machine Learning methods with biochemical and biomedical research has revolutionized the field of toxicology, significantly advancing our understanding of the toxicological effects of chemicals on biological systems. Cardiovascular diseases remain the leading global cause of death. The constant exposure to multiple chemicals with potential cardiotoxic effects, including environmental contaminants, pesticides, food additives, and drugs, can significantly contribute to these adverse health outcomes. Traditional methods for assessing chemical hazards and their impact on biological function heavily rely on experimental assays and animal studies, which are often time-consuming, resource-intensive, and limited in scalability. To overcome these limitations in silico methods have emerged as indispensable tools in toxicological research, reducing the need for traditional in vivo testing and conserving valuable resources in terms of time and cost. In this study, Artificial Intelligence methods are used as first-tier components within an Integrated Approach to Testing and Assessment. We explored the potential benefits of using Multitask Neural Networks, where multiple levels of cardiotoxicity information are combined to enhance model performance. Multitask learning, based on specific architectures such as Mixture of Experts (MoE), showed promising results and surpasses the performance of single-task baseline models. When predicting a holdout set, multitask model achieved high performance on twelve different endpoints related to cardiotoxicity defined by Adverse Outcome Pathways Network. The best developed model achieved a balanced accuracy of 78%, a sensitivity of 80%, and a specificity of 76% across all endpoints in the holdout set.</p><p>An advanced multitask model was developed to predict cardiotoxicity mechanisms induced by small molecules. The model demonstrates broad mechanistic coverage and achieves performance comparable to, or exceeding, state-of-the-art methods. These results suggest that the model could serve as a valuable first-tier component in advanced New Approach Methodologies for prioritizing chemicals for further testing.</p>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01072-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01072-7\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01072-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人工智能和机器学习方法与生物化学和生物医学研究的结合彻底改变了毒理学领域,大大提高了我们对化学物质对生物系统的毒理学作用的理解。心血管疾病仍然是全球主要的死亡原因。持续接触多种具有潜在心脏毒性作用的化学物质,包括环境污染物、农药、食品添加剂和药物,可显著导致这些不利的健康结果。评估化学危害及其对生物功能影响的传统方法严重依赖于实验分析和动物研究,这些方法往往耗时、资源密集且可扩展性有限。为了克服这些限制,计算机方法已成为毒理学研究中不可或缺的工具,减少了对传统体内测试的需求,并在时间和成本方面节省了宝贵的资源。在本研究中,人工智能方法被用作测试和评估集成方法中的第一层组件。我们探索了使用多任务神经网络的潜在好处,其中多级心脏毒性信息相结合以提高模型性能。基于专家混合(MoE)等特定架构的多任务学习显示出令人鼓舞的结果,并且超过了单任务基线模型的性能。当预测抵抗集时,多任务模型在与不良结果通路网络定义的心脏毒性相关的12个不同终点上取得了高性能。开发的最佳模型在holdout集中的所有端点上实现了78%的平衡精度,80%的灵敏度和76%的特异性。建立了一种先进的多任务模型来预测小分子诱导的心脏毒性机制。该模型展示了广泛的机制覆盖范围,并实现了与最先进方法相当或超过最先进方法的性能。这些结果表明,该模型可以作为先进的新方法方法中有价值的第一级组成部分,用于确定化学物质的优先级以进行进一步测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixture of experts for multitask learning in cardiotoxicity assessment

In recent years, the integration of Artificial Intelligence and Machine Learning methods with biochemical and biomedical research has revolutionized the field of toxicology, significantly advancing our understanding of the toxicological effects of chemicals on biological systems. Cardiovascular diseases remain the leading global cause of death. The constant exposure to multiple chemicals with potential cardiotoxic effects, including environmental contaminants, pesticides, food additives, and drugs, can significantly contribute to these adverse health outcomes. Traditional methods for assessing chemical hazards and their impact on biological function heavily rely on experimental assays and animal studies, which are often time-consuming, resource-intensive, and limited in scalability. To overcome these limitations in silico methods have emerged as indispensable tools in toxicological research, reducing the need for traditional in vivo testing and conserving valuable resources in terms of time and cost. In this study, Artificial Intelligence methods are used as first-tier components within an Integrated Approach to Testing and Assessment. We explored the potential benefits of using Multitask Neural Networks, where multiple levels of cardiotoxicity information are combined to enhance model performance. Multitask learning, based on specific architectures such as Mixture of Experts (MoE), showed promising results and surpasses the performance of single-task baseline models. When predicting a holdout set, multitask model achieved high performance on twelve different endpoints related to cardiotoxicity defined by Adverse Outcome Pathways Network. The best developed model achieved a balanced accuracy of 78%, a sensitivity of 80%, and a specificity of 76% across all endpoints in the holdout set.

An advanced multitask model was developed to predict cardiotoxicity mechanisms induced by small molecules. The model demonstrates broad mechanistic coverage and achieves performance comparable to, or exceeding, state-of-the-art methods. These results suggest that the model could serve as a valuable first-tier component in advanced New Approach Methodologies for prioritizing chemicals for further testing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信