Lucina-May Nollen, David Meijer, Maria Sorokina, Justin J. J. van der Hooft
{"title":"Biosynfoni:生物合成信息和可解释的轻量级分子指纹","authors":"Lucina-May Nollen, David Meijer, Maria Sorokina, Justin J. J. van der Hooft","doi":"10.1186/s13321-025-01081-6","DOIUrl":null,"url":null,"abstract":"<div><p>Natural products provide a rich source of bioactive molecules for a variety of applications. Molecular fingerprints are the tool of choice for systematic large-scale studies of their structures. However, current molecular fingerprints insufficiently represent characteristic features of natural products inherently, decreasing the interpretability of natural product-specific predictions. Here, we show that a natural product-specific molecular fingerprint based on a relatively small set of selected biosynthetic building blocks provides more interpretable predictions of biosynthetic distance and natural product classification. Our fingerprint Biosynfoni outperforms MACCS, Morgan, and Daylight-like fingerprints in biosynthetic distance estimation, using 39 substructure keys. Moreover, Biosynfoni’s design, compactness, and concrete substructure definition allow easy visualisation of the detected substructures and their respective biosynthetic pathway origins. Through Biosynfoni, users can gain more insights from predictions and better examine the importance of features within machine learning models. Our results show that a short fingerprint consisting of biologically significant building blocks performs on par with top-performing molecular fingerprints for natural product classification while improving prediction explainability.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01081-6","citationCount":"0","resultStr":"{\"title\":\"Biosynfoni: a biosynthesis-informed and interpretable lightweight molecular fingerprint\",\"authors\":\"Lucina-May Nollen, David Meijer, Maria Sorokina, Justin J. J. van der Hooft\",\"doi\":\"10.1186/s13321-025-01081-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Natural products provide a rich source of bioactive molecules for a variety of applications. Molecular fingerprints are the tool of choice for systematic large-scale studies of their structures. However, current molecular fingerprints insufficiently represent characteristic features of natural products inherently, decreasing the interpretability of natural product-specific predictions. Here, we show that a natural product-specific molecular fingerprint based on a relatively small set of selected biosynthetic building blocks provides more interpretable predictions of biosynthetic distance and natural product classification. Our fingerprint Biosynfoni outperforms MACCS, Morgan, and Daylight-like fingerprints in biosynthetic distance estimation, using 39 substructure keys. Moreover, Biosynfoni’s design, compactness, and concrete substructure definition allow easy visualisation of the detected substructures and their respective biosynthetic pathway origins. Through Biosynfoni, users can gain more insights from predictions and better examine the importance of features within machine learning models. Our results show that a short fingerprint consisting of biologically significant building blocks performs on par with top-performing molecular fingerprints for natural product classification while improving prediction explainability.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01081-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01081-6\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01081-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Biosynfoni: a biosynthesis-informed and interpretable lightweight molecular fingerprint
Natural products provide a rich source of bioactive molecules for a variety of applications. Molecular fingerprints are the tool of choice for systematic large-scale studies of their structures. However, current molecular fingerprints insufficiently represent characteristic features of natural products inherently, decreasing the interpretability of natural product-specific predictions. Here, we show that a natural product-specific molecular fingerprint based on a relatively small set of selected biosynthetic building blocks provides more interpretable predictions of biosynthetic distance and natural product classification. Our fingerprint Biosynfoni outperforms MACCS, Morgan, and Daylight-like fingerprints in biosynthetic distance estimation, using 39 substructure keys. Moreover, Biosynfoni’s design, compactness, and concrete substructure definition allow easy visualisation of the detected substructures and their respective biosynthetic pathway origins. Through Biosynfoni, users can gain more insights from predictions and better examine the importance of features within machine learning models. Our results show that a short fingerprint consisting of biologically significant building blocks performs on par with top-performing molecular fingerprints for natural product classification while improving prediction explainability.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.