Biosynfoni:生物合成信息和可解释的轻量级分子指纹

IF 5.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lucina-May Nollen, David Meijer, Maria Sorokina, Justin J. J. van der Hooft
{"title":"Biosynfoni:生物合成信息和可解释的轻量级分子指纹","authors":"Lucina-May Nollen,&nbsp;David Meijer,&nbsp;Maria Sorokina,&nbsp;Justin J. J. van der Hooft","doi":"10.1186/s13321-025-01081-6","DOIUrl":null,"url":null,"abstract":"<div><p>Natural products provide a rich source of bioactive molecules for a variety of applications. Molecular fingerprints are the tool of choice for systematic large-scale studies of their structures. However, current molecular fingerprints insufficiently represent characteristic features of natural products inherently, decreasing the interpretability of natural product-specific predictions. Here, we show that a natural product-specific molecular fingerprint based on a relatively small set of selected biosynthetic building blocks provides more interpretable predictions of biosynthetic distance and natural product classification. Our fingerprint Biosynfoni outperforms MACCS, Morgan, and Daylight-like fingerprints in biosynthetic distance estimation, using 39 substructure keys. Moreover, Biosynfoni’s design, compactness, and concrete substructure definition allow easy visualisation of the detected substructures and their respective biosynthetic pathway origins. Through Biosynfoni, users can gain more insights from predictions and better examine the importance of features within machine learning models. Our results show that a short fingerprint consisting of biologically significant building blocks performs on par with top-performing molecular fingerprints for natural product classification while improving prediction explainability.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01081-6","citationCount":"0","resultStr":"{\"title\":\"Biosynfoni: a biosynthesis-informed and interpretable lightweight molecular fingerprint\",\"authors\":\"Lucina-May Nollen,&nbsp;David Meijer,&nbsp;Maria Sorokina,&nbsp;Justin J. J. van der Hooft\",\"doi\":\"10.1186/s13321-025-01081-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Natural products provide a rich source of bioactive molecules for a variety of applications. Molecular fingerprints are the tool of choice for systematic large-scale studies of their structures. However, current molecular fingerprints insufficiently represent characteristic features of natural products inherently, decreasing the interpretability of natural product-specific predictions. Here, we show that a natural product-specific molecular fingerprint based on a relatively small set of selected biosynthetic building blocks provides more interpretable predictions of biosynthetic distance and natural product classification. Our fingerprint Biosynfoni outperforms MACCS, Morgan, and Daylight-like fingerprints in biosynthetic distance estimation, using 39 substructure keys. Moreover, Biosynfoni’s design, compactness, and concrete substructure definition allow easy visualisation of the detected substructures and their respective biosynthetic pathway origins. Through Biosynfoni, users can gain more insights from predictions and better examine the importance of features within machine learning models. Our results show that a short fingerprint consisting of biologically significant building blocks performs on par with top-performing molecular fingerprints for natural product classification while improving prediction explainability.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01081-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01081-6\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01081-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

天然产物为各种应用提供了丰富的生物活性分子来源。分子指纹图谱是对其结构进行系统大规模研究的首选工具。然而,目前的分子指纹不足以代表天然产物固有的特征特征,降低了天然产物特异性预测的可解释性。在这里,我们展示了基于相对较小的选定生物合成构建块集的天然产物特异性分子指纹,为生物合成距离和天然产物分类提供了更可解释的预测。我们的指纹Biosynfoni在生物合成距离估计方面优于MACCS, Morgan和Daylight-like指纹,使用39个子结构键。此外,Biosynfoni的设计、紧凑性和具体的子结构定义可以很容易地可视化检测到的子结构及其各自的生物合成途径起源。通过Biosynfoni,用户可以从预测中获得更多的见解,并更好地检查机器学习模型中特征的重要性。我们的研究结果表明,由生物学上重要的构建块组成的短指纹在天然产品分类方面的表现与顶级分子指纹相当,同时提高了预测的可解释性。Biosynfoni通过简洁、清晰地反映天然产物的生物合成信息,有助于建立更具可解释性和轻量级的分类和反生物合成模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biosynfoni: a biosynthesis-informed and interpretable lightweight molecular fingerprint

Natural products provide a rich source of bioactive molecules for a variety of applications. Molecular fingerprints are the tool of choice for systematic large-scale studies of their structures. However, current molecular fingerprints insufficiently represent characteristic features of natural products inherently, decreasing the interpretability of natural product-specific predictions. Here, we show that a natural product-specific molecular fingerprint based on a relatively small set of selected biosynthetic building blocks provides more interpretable predictions of biosynthetic distance and natural product classification. Our fingerprint Biosynfoni outperforms MACCS, Morgan, and Daylight-like fingerprints in biosynthetic distance estimation, using 39 substructure keys. Moreover, Biosynfoni’s design, compactness, and concrete substructure definition allow easy visualisation of the detected substructures and their respective biosynthetic pathway origins. Through Biosynfoni, users can gain more insights from predictions and better examine the importance of features within machine learning models. Our results show that a short fingerprint consisting of biologically significant building blocks performs on par with top-performing molecular fingerprints for natural product classification while improving prediction explainability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信