本征态热化假设下量子吉布斯态制备的Lindblad工程

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-08-29 DOI:10.22331/q-2025-08-29-1843
Eric Brunner, Luuk Coopmans, Gabriel Matos, Matthias Rosenkranz, Frederic Sauvage, Yuta Kikuchi
{"title":"本征态热化假设下量子吉布斯态制备的Lindblad工程","authors":"Eric Brunner, Luuk Coopmans, Gabriel Matos, Matthias Rosenkranz, Frederic Sauvage, Yuta Kikuchi","doi":"10.22331/q-2025-08-29-1843","DOIUrl":null,"url":null,"abstract":"Building upon recent progress in Lindblad engineering for quantum Gibbs state preparation algorithms, we propose a simplified protocol that is shown to be efficient under the eigenstate thermalization hypothesis (ETH). The ETH reduces circuit overheads of the Lindblad simulation algorithm and ensures a fast convergence toward the target Gibbs state. Moreover, we show that the realized Lindblad dynamics exhibits an inherent resilience against stochastic noise, opening up the path to a first demonstration on quantum computers. We complement our claims with numerical studies of the algorithm's convergence in various regimes of the mixed-field Ising model. In line with our predictions, we observe a mixing time scaling polynomially with system size when the ETH is satisfied. In addition, we assess the impact of algorithmic and hardware-induced errors on the algorithm's performance by carrying out quantum circuit simulations of our Lindblad simulation protocol with a local depolarizing noise model. This work bridges the gap between recent theoretical advances in dissipative Gibbs state preparation algorithms and their eventual quantum hardware implementation.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"219 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lindblad engineering for quantum Gibbs state preparation under the eigenstate thermalization hypothesis\",\"authors\":\"Eric Brunner, Luuk Coopmans, Gabriel Matos, Matthias Rosenkranz, Frederic Sauvage, Yuta Kikuchi\",\"doi\":\"10.22331/q-2025-08-29-1843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building upon recent progress in Lindblad engineering for quantum Gibbs state preparation algorithms, we propose a simplified protocol that is shown to be efficient under the eigenstate thermalization hypothesis (ETH). The ETH reduces circuit overheads of the Lindblad simulation algorithm and ensures a fast convergence toward the target Gibbs state. Moreover, we show that the realized Lindblad dynamics exhibits an inherent resilience against stochastic noise, opening up the path to a first demonstration on quantum computers. We complement our claims with numerical studies of the algorithm's convergence in various regimes of the mixed-field Ising model. In line with our predictions, we observe a mixing time scaling polynomially with system size when the ETH is satisfied. In addition, we assess the impact of algorithmic and hardware-induced errors on the algorithm's performance by carrying out quantum circuit simulations of our Lindblad simulation protocol with a local depolarizing noise model. This work bridges the gap between recent theoretical advances in dissipative Gibbs state preparation algorithms and their eventual quantum hardware implementation.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"219 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-08-29-1843\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-08-29-1843","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于Lindblad工程中量子吉布斯态制备算法的最新进展,我们提出了一种简化的协议,该协议在本征态热化假设(ETH)下被证明是有效的。ETH降低了Lindblad仿真算法的电路开销,保证了快速收敛到目标Gibbs状态。此外,我们表明,实现的Lindblad动力学表现出对随机噪声的固有弹性,为量子计算机上的首次演示开辟了道路。我们补充了我们的主张与算法的收敛在混合场Ising模型的各种制度的数值研究。与我们的预测一致,当ETH满足时,我们观察到混合时间随系统大小多项式缩放。此外,我们通过使用局部去极化噪声模型对我们的Lindblad仿真协议进行量子电路模拟,评估了算法和硬件引起的误差对算法性能的影响。这项工作弥合了耗散吉布斯状态准备算法的最新理论进展与其最终的量子硬件实现之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lindblad engineering for quantum Gibbs state preparation under the eigenstate thermalization hypothesis
Building upon recent progress in Lindblad engineering for quantum Gibbs state preparation algorithms, we propose a simplified protocol that is shown to be efficient under the eigenstate thermalization hypothesis (ETH). The ETH reduces circuit overheads of the Lindblad simulation algorithm and ensures a fast convergence toward the target Gibbs state. Moreover, we show that the realized Lindblad dynamics exhibits an inherent resilience against stochastic noise, opening up the path to a first demonstration on quantum computers. We complement our claims with numerical studies of the algorithm's convergence in various regimes of the mixed-field Ising model. In line with our predictions, we observe a mixing time scaling polynomially with system size when the ETH is satisfied. In addition, we assess the impact of algorithmic and hardware-induced errors on the algorithm's performance by carrying out quantum circuit simulations of our Lindblad simulation protocol with a local depolarizing noise model. This work bridges the gap between recent theoretical advances in dissipative Gibbs state preparation algorithms and their eventual quantum hardware implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信