Aman Kumar, Cyprian Lewandowski, Hitesh J. Changlani
{"title":"三角摩尔体系中广义Wigner结晶度的起源和稳定性","authors":"Aman Kumar, Cyprian Lewandowski, Hitesh J. Changlani","doi":"10.1038/s41535-025-00792-1","DOIUrl":null,"url":null,"abstract":"<p>Generalized Wigner crystals (GWC) on triangular moiré superlattices, formed from stacking two layers of transition metal chalcogenides, have been observed at multiple fractional fillings [Nature 587, 214–218 (2020), Nat. Phys. 17, 715–719 (2021), Nature 597, 650–654 (2021)]. Motivated by these experiments, tied with the need for accurate microscopic descriptions of these materials, we explore the origins of GWC at <i>n</i> = 1/3 and 2/3 filling. We demonstrate the general limitations of theoretical descriptions relying on finite-range, versus long-range interactions, however, we clarify why some properties are captured by an effective nearest-neighbor model. We study both classical and quantum effects at zero and finite temperatures, discussing the role of charge frustration, identifying a “pinball” phase, a partially quantum melted GWC, with no classical analog. Our work addresses several experimental observations and makes predictions for how many of the theoretical findings can be potentially realized in future experiments.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"13 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Origin and stability of generalized Wigner crystallinity in triangular moiré systems\",\"authors\":\"Aman Kumar, Cyprian Lewandowski, Hitesh J. Changlani\",\"doi\":\"10.1038/s41535-025-00792-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Generalized Wigner crystals (GWC) on triangular moiré superlattices, formed from stacking two layers of transition metal chalcogenides, have been observed at multiple fractional fillings [Nature 587, 214–218 (2020), Nat. Phys. 17, 715–719 (2021), Nature 597, 650–654 (2021)]. Motivated by these experiments, tied with the need for accurate microscopic descriptions of these materials, we explore the origins of GWC at <i>n</i> = 1/3 and 2/3 filling. We demonstrate the general limitations of theoretical descriptions relying on finite-range, versus long-range interactions, however, we clarify why some properties are captured by an effective nearest-neighbor model. We study both classical and quantum effects at zero and finite temperatures, discussing the role of charge frustration, identifying a “pinball” phase, a partially quantum melted GWC, with no classical analog. Our work addresses several experimental observations and makes predictions for how many of the theoretical findings can be potentially realized in future experiments.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-025-00792-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00792-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Origin and stability of generalized Wigner crystallinity in triangular moiré systems
Generalized Wigner crystals (GWC) on triangular moiré superlattices, formed from stacking two layers of transition metal chalcogenides, have been observed at multiple fractional fillings [Nature 587, 214–218 (2020), Nat. Phys. 17, 715–719 (2021), Nature 597, 650–654 (2021)]. Motivated by these experiments, tied with the need for accurate microscopic descriptions of these materials, we explore the origins of GWC at n = 1/3 and 2/3 filling. We demonstrate the general limitations of theoretical descriptions relying on finite-range, versus long-range interactions, however, we clarify why some properties are captured by an effective nearest-neighbor model. We study both classical and quantum effects at zero and finite temperatures, discussing the role of charge frustration, identifying a “pinball” phase, a partially quantum melted GWC, with no classical analog. Our work addresses several experimental observations and makes predictions for how many of the theoretical findings can be potentially realized in future experiments.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.