Emily K. Sims, William E. Russell, David Cuthbertson, Jay S. Skyler, Laura M. Jacobsen, Heba M. Ismail, Maria J. Redondo, Brandon M. Nathan, Alice L.J. Carr, Peter N. Taylor, Colin M. Dayan, Alfonso Galderisi, Kevan C. Herold, Jay M. Sosenko
{"title":"评估固定时间间隔内1型糖尿病预防试验结果的新方法","authors":"Emily K. Sims, William E. Russell, David Cuthbertson, Jay S. Skyler, Laura M. Jacobsen, Heba M. Ismail, Maria J. Redondo, Brandon M. Nathan, Alice L.J. Carr, Peter N. Taylor, Colin M. Dayan, Alfonso Galderisi, Kevan C. Herold, Jay M. Sosenko","doi":"10.2337/db25-0310","DOIUrl":null,"url":null,"abstract":"We evaluated whether a binary metabolic end point for change (Δ) from baseline to 1-year postrandomization could be useful in type 1 diabetes (T1D) prevention trials. Using 2-h oral glucose tolerance testing data from the stage 1 participants in the recent abatacept prevention trial and similar participants in the observational TrialNet Pathway to Prevention (PTP) study, we assessed Δmetabolic measures, plotted glucose and C-peptide response curves, and categorized vectors for Δ from baseline to 1 year as metabolic treatment failure versus success. Analyses were validated using the teplizumab prevention study. PTP participants with Δglucose >0 and ΔC-peptide <0 from baseline to 1 year were at substantially higher risk for stage 3 T1D than those with Δglucose <0 and ΔC-peptide >0 (P < 0.0001). Based on this, we compared placebo versus treatment groups in both trials for failure (Δglucose >0 with ΔC-peptide <0) versus success (Δglucose <0 with ΔC-peptide >0) after 1 year. Using this endpoint, a favorable metabolic impact of abatacept was found after 12 months of treatment. An analytic approach using a binary metabolic end point of failure versus success at a fixed time interval appears to detect treatment effects at least as well as standard primary end points with shorter follow-up. ARTICLE HIGHLIGHTS Challenges in time to event type 1 diabetes (T1D) prevention trial design can yield negative results even for treatments that may actually improve disease pathology. We evaluated whether a binary metabolic end point for 12-month change from baseline to 1 year postrandomization could be useful in T1D prevention trials. This approach detected treatment effects at least as well as standard primary end points with shorter follow-up. Fixed interval metabolic end points should be used in combination with traditional T1D end points to better understand treatment effects of preventive agents.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"18 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Approach for Assessing Outcomes of Type 1 Diabetes Prevention Trials Over a Fixed Time Interval\",\"authors\":\"Emily K. Sims, William E. Russell, David Cuthbertson, Jay S. Skyler, Laura M. Jacobsen, Heba M. Ismail, Maria J. Redondo, Brandon M. Nathan, Alice L.J. Carr, Peter N. Taylor, Colin M. Dayan, Alfonso Galderisi, Kevan C. Herold, Jay M. Sosenko\",\"doi\":\"10.2337/db25-0310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We evaluated whether a binary metabolic end point for change (Δ) from baseline to 1-year postrandomization could be useful in type 1 diabetes (T1D) prevention trials. Using 2-h oral glucose tolerance testing data from the stage 1 participants in the recent abatacept prevention trial and similar participants in the observational TrialNet Pathway to Prevention (PTP) study, we assessed Δmetabolic measures, plotted glucose and C-peptide response curves, and categorized vectors for Δ from baseline to 1 year as metabolic treatment failure versus success. Analyses were validated using the teplizumab prevention study. PTP participants with Δglucose >0 and ΔC-peptide <0 from baseline to 1 year were at substantially higher risk for stage 3 T1D than those with Δglucose <0 and ΔC-peptide >0 (P < 0.0001). Based on this, we compared placebo versus treatment groups in both trials for failure (Δglucose >0 with ΔC-peptide <0) versus success (Δglucose <0 with ΔC-peptide >0) after 1 year. Using this endpoint, a favorable metabolic impact of abatacept was found after 12 months of treatment. An analytic approach using a binary metabolic end point of failure versus success at a fixed time interval appears to detect treatment effects at least as well as standard primary end points with shorter follow-up. ARTICLE HIGHLIGHTS Challenges in time to event type 1 diabetes (T1D) prevention trial design can yield negative results even for treatments that may actually improve disease pathology. We evaluated whether a binary metabolic end point for 12-month change from baseline to 1 year postrandomization could be useful in T1D prevention trials. This approach detected treatment effects at least as well as standard primary end points with shorter follow-up. Fixed interval metabolic end points should be used in combination with traditional T1D end points to better understand treatment effects of preventive agents.\",\"PeriodicalId\":11376,\"journal\":{\"name\":\"Diabetes\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2337/db25-0310\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db25-0310","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Novel Approach for Assessing Outcomes of Type 1 Diabetes Prevention Trials Over a Fixed Time Interval
We evaluated whether a binary metabolic end point for change (Δ) from baseline to 1-year postrandomization could be useful in type 1 diabetes (T1D) prevention trials. Using 2-h oral glucose tolerance testing data from the stage 1 participants in the recent abatacept prevention trial and similar participants in the observational TrialNet Pathway to Prevention (PTP) study, we assessed Δmetabolic measures, plotted glucose and C-peptide response curves, and categorized vectors for Δ from baseline to 1 year as metabolic treatment failure versus success. Analyses were validated using the teplizumab prevention study. PTP participants with Δglucose >0 and ΔC-peptide <0 from baseline to 1 year were at substantially higher risk for stage 3 T1D than those with Δglucose <0 and ΔC-peptide >0 (P < 0.0001). Based on this, we compared placebo versus treatment groups in both trials for failure (Δglucose >0 with ΔC-peptide <0) versus success (Δglucose <0 with ΔC-peptide >0) after 1 year. Using this endpoint, a favorable metabolic impact of abatacept was found after 12 months of treatment. An analytic approach using a binary metabolic end point of failure versus success at a fixed time interval appears to detect treatment effects at least as well as standard primary end points with shorter follow-up. ARTICLE HIGHLIGHTS Challenges in time to event type 1 diabetes (T1D) prevention trial design can yield negative results even for treatments that may actually improve disease pathology. We evaluated whether a binary metabolic end point for 12-month change from baseline to 1 year postrandomization could be useful in T1D prevention trials. This approach detected treatment effects at least as well as standard primary end points with shorter follow-up. Fixed interval metabolic end points should be used in combination with traditional T1D end points to better understand treatment effects of preventive agents.
期刊介绍:
Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes.
However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.