倾斜撞击中的激波熔化和熔体沉积模式:来自数值模拟的见解

IF 4 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Xi-Zi Luo, Meng-Hua Zhu, Min Ding, Lukas Manske, Robert Luther, Kai Wünnemann
{"title":"倾斜撞击中的激波熔化和熔体沉积模式:来自数值模拟的见解","authors":"Xi-Zi Luo,&nbsp;Meng-Hua Zhu,&nbsp;Min Ding,&nbsp;Lukas Manske,&nbsp;Robert Luther,&nbsp;Kai Wünnemann","doi":"10.1029/2025JE009066","DOIUrl":null,"url":null,"abstract":"<p>Hypervelocity impacts induce shock melting and distribute melted materials across planetary surfaces. The impact angle significantly affects melt production and ejecta formation, but systematic studies of these processes in oblique impacts are limited. Here, we employ the shock physics code iSALE-3D to systematically simulate shock melting, crater excavation, ejection, and melt deposition under lunar gravity conditions with varying impact angles (10°–90°) and impactor diameters (1–30 km), producing transient craters with diameters ranging from ∼10 to 200 km. Simulation results show that the total melt volume decreases by ∼25% when the impact angle drops from 90<span></span><math>\n <semantics>\n <mrow>\n <mo>°</mo>\n </mrow>\n <annotation> ${}^{\\circ}$</annotation>\n </semantics></math> (i.e., vertical impact) to 45<span></span><math>\n <semantics>\n <mrow>\n <mo>°</mo>\n </mrow>\n <annotation> ${}^{\\circ}$</annotation>\n </semantics></math>, and by ∼85% when the angle reduces to 25<span></span><math>\n <semantics>\n <mrow>\n <mo>°</mo>\n </mrow>\n <annotation> ${}^{\\circ}$</annotation>\n </semantics></math> (i.e., highly oblique impact). The ratio of ejected to generated melt generally remains constant for impact angles &gt;25<span></span><math>\n <semantics>\n <mrow>\n <mo>°</mo>\n </mrow>\n <annotation> ${}^{\\circ}$</annotation>\n </semantics></math>, but increases significantly at lower impact angles. With more oblique impacts, melt deposits around craters gradually exhibit an uprange zone of avoidance, similar to the pattern of the entire ejecta blanket. Melt content within the ejecta generally increases with distance from the crater. For impact angles exceeding 45°, crossrange and downrange melt distributions closely resemble those generated by vertical impacts. Notably, our results demonstrate that impact angles &lt;45<span></span><math>\n <semantics>\n <mrow>\n <mo>°</mo>\n </mrow>\n <annotation> ${}^{\\circ}$</annotation>\n </semantics></math> produce considerably reduced melt quantity and melt fraction in ejecta relative to vertical impacts, underscoring the critical role of considering impact angle when examining melt production in impact cratering.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shock Melting and Melt Deposit Patterns in Oblique Impacts: Insights From Numerical Simulations\",\"authors\":\"Xi-Zi Luo,&nbsp;Meng-Hua Zhu,&nbsp;Min Ding,&nbsp;Lukas Manske,&nbsp;Robert Luther,&nbsp;Kai Wünnemann\",\"doi\":\"10.1029/2025JE009066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hypervelocity impacts induce shock melting and distribute melted materials across planetary surfaces. The impact angle significantly affects melt production and ejecta formation, but systematic studies of these processes in oblique impacts are limited. Here, we employ the shock physics code iSALE-3D to systematically simulate shock melting, crater excavation, ejection, and melt deposition under lunar gravity conditions with varying impact angles (10°–90°) and impactor diameters (1–30 km), producing transient craters with diameters ranging from ∼10 to 200 km. Simulation results show that the total melt volume decreases by ∼25% when the impact angle drops from 90<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>°</mo>\\n </mrow>\\n <annotation> ${}^{\\\\circ}$</annotation>\\n </semantics></math> (i.e., vertical impact) to 45<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>°</mo>\\n </mrow>\\n <annotation> ${}^{\\\\circ}$</annotation>\\n </semantics></math>, and by ∼85% when the angle reduces to 25<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>°</mo>\\n </mrow>\\n <annotation> ${}^{\\\\circ}$</annotation>\\n </semantics></math> (i.e., highly oblique impact). The ratio of ejected to generated melt generally remains constant for impact angles &gt;25<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>°</mo>\\n </mrow>\\n <annotation> ${}^{\\\\circ}$</annotation>\\n </semantics></math>, but increases significantly at lower impact angles. With more oblique impacts, melt deposits around craters gradually exhibit an uprange zone of avoidance, similar to the pattern of the entire ejecta blanket. Melt content within the ejecta generally increases with distance from the crater. For impact angles exceeding 45°, crossrange and downrange melt distributions closely resemble those generated by vertical impacts. Notably, our results demonstrate that impact angles &lt;45<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>°</mo>\\n </mrow>\\n <annotation> ${}^{\\\\circ}$</annotation>\\n </semantics></math> produce considerably reduced melt quantity and melt fraction in ejecta relative to vertical impacts, underscoring the critical role of considering impact angle when examining melt production in impact cratering.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"130 9\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JE009066\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JE009066","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

超高速撞击会引起激波熔化,并使熔化的物质分布在行星表面。撞击角度对熔体的产生和喷出物的形成有显著影响,但对倾斜撞击中这些过程的系统研究有限。在这里,我们使用激波物理代码iSALE-3D系统地模拟了不同撞击角度(10°-90°)和撞击体直径(1-30公里)的月球重力条件下的冲击熔化、陨石坑挖掘、喷射和熔体沉积,产生了直径从10到200公里不等的瞬态陨石坑。模拟结果表明,当冲击角从90°${}^{\circ}$(即垂直冲击)下降到45°${}^{\circ}$时,总熔体体积减少了~ 25%,当角度减小到25°${}^{\circ}$(即,高度倾斜撞击)。喷射熔体与生成熔体的比例一般在冲击角>;25°${}^{\circ}$时保持不变,但在较低的冲击角时显著增加。随着更多的斜向撞击,陨石坑周围的熔体沉积物逐渐呈现出一个范围回避区,类似于整个喷射层的模式。喷出物中的熔体含量通常随着离火山口的距离而增加。当撞击角度超过45°时,横向和向下的熔体分布与垂直撞击产生的熔体分布非常相似。值得注意的是,我们的研究结果表明,与垂直撞击相比,45°的撞击角产生的熔体数量和喷射物中的熔体分数明显减少,这强调了在检查撞击坑中熔体产生时考虑撞击角的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Shock Melting and Melt Deposit Patterns in Oblique Impacts: Insights From Numerical Simulations

Shock Melting and Melt Deposit Patterns in Oblique Impacts: Insights From Numerical Simulations

Shock Melting and Melt Deposit Patterns in Oblique Impacts: Insights From Numerical Simulations

Shock Melting and Melt Deposit Patterns in Oblique Impacts: Insights From Numerical Simulations

Hypervelocity impacts induce shock melting and distribute melted materials across planetary surfaces. The impact angle significantly affects melt production and ejecta formation, but systematic studies of these processes in oblique impacts are limited. Here, we employ the shock physics code iSALE-3D to systematically simulate shock melting, crater excavation, ejection, and melt deposition under lunar gravity conditions with varying impact angles (10°–90°) and impactor diameters (1–30 km), producing transient craters with diameters ranging from ∼10 to 200 km. Simulation results show that the total melt volume decreases by ∼25% when the impact angle drops from 90 ° ${}^{\circ}$ (i.e., vertical impact) to 45 ° ${}^{\circ}$ , and by ∼85% when the angle reduces to 25 ° ${}^{\circ}$ (i.e., highly oblique impact). The ratio of ejected to generated melt generally remains constant for impact angles >25 ° ${}^{\circ}$ , but increases significantly at lower impact angles. With more oblique impacts, melt deposits around craters gradually exhibit an uprange zone of avoidance, similar to the pattern of the entire ejecta blanket. Melt content within the ejecta generally increases with distance from the crater. For impact angles exceeding 45°, crossrange and downrange melt distributions closely resemble those generated by vertical impacts. Notably, our results demonstrate that impact angles <45 ° ${}^{\circ}$ produce considerably reduced melt quantity and melt fraction in ejecta relative to vertical impacts, underscoring the critical role of considering impact angle when examining melt production in impact cratering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信