一种基于球面谐波的全局到局部旋转优化方法

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Zihang He, Yuezhi Yang, Congyue Deng, Jiaxin Lu, Leonidas Guibas, Qixing Huang
{"title":"一种基于球面谐波的全局到局部旋转优化方法","authors":"Zihang He,&nbsp;Yuezhi Yang,&nbsp;Congyue Deng,&nbsp;Jiaxin Lu,&nbsp;Leonidas Guibas,&nbsp;Qixing Huang","doi":"10.1111/cgf.70185","DOIUrl":null,"url":null,"abstract":"<p>This paper studies the classical problem of 3D shape alignment, namely computing the relative rotation between two shapes (centered at the origin and normalized by scale) by aligning spherical harmonic coefficients of their spherical function representations. Unlike most prior work, which focuses on the regime in which the inputs have approximately the same shape, we focus on the more general and challenging setting in which the shapes may differ. Central to our approach is a stability analysis of spherical harmonic coefficients, which sheds light on how to align them for robust rotation estimation. We observe that due to symmetries, certain spherical harmonic coefficients may vanish. As a result, using a robust norm for alignment that automatically discards such coefficients offers more accurate rotation estimates than the widely used L2 norm. To enable efficient continuous optimization, we show how to analytically compute the Jacobian of spherical harmonic coefficients with respect to rotations. We also introduce an efficient approach for rotation initialization that requires only a sparse set of rotation samples. Experimental results show that our approach achieves better accuracy and efficiency compared to baseline approaches.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Global-to-Local Rotation Optimization Approach via Spherical Harmonics\",\"authors\":\"Zihang He,&nbsp;Yuezhi Yang,&nbsp;Congyue Deng,&nbsp;Jiaxin Lu,&nbsp;Leonidas Guibas,&nbsp;Qixing Huang\",\"doi\":\"10.1111/cgf.70185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies the classical problem of 3D shape alignment, namely computing the relative rotation between two shapes (centered at the origin and normalized by scale) by aligning spherical harmonic coefficients of their spherical function representations. Unlike most prior work, which focuses on the regime in which the inputs have approximately the same shape, we focus on the more general and challenging setting in which the shapes may differ. Central to our approach is a stability analysis of spherical harmonic coefficients, which sheds light on how to align them for robust rotation estimation. We observe that due to symmetries, certain spherical harmonic coefficients may vanish. As a result, using a robust norm for alignment that automatically discards such coefficients offers more accurate rotation estimates than the widely used L2 norm. To enable efficient continuous optimization, we show how to analytically compute the Jacobian of spherical harmonic coefficients with respect to rotations. We also introduce an efficient approach for rotation initialization that requires only a sparse set of rotation samples. Experimental results show that our approach achieves better accuracy and efficiency compared to baseline approaches.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"44 5\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70185\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70185","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了三维形状对齐的经典问题,即通过对齐两个形状的球面函数表示的球谐系数来计算两个形状(以原点为中心,按比例归一化)之间的相对旋转。与大多数先前的工作不同,这些工作关注的是输入具有大致相同形状的状态,而我们关注的是形状可能不同的更一般和更具挑战性的设置。我们方法的核心是球谐系数的稳定性分析,它揭示了如何对齐它们以进行鲁棒旋转估计。我们观察到,由于对称性,某些球谐系数可能消失。因此,使用自动丢弃这些系数的鲁棒校准规范提供了比广泛使用的L2规范更准确的旋转估计。为了实现有效的连续优化,我们展示了如何解析地计算关于旋转的球面调和系数的雅可比矩阵。我们还介绍了一种有效的旋转初始化方法,它只需要一组稀疏的旋转样本。实验结果表明,与基线方法相比,该方法具有更高的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Global-to-Local Rotation Optimization Approach via Spherical Harmonics

This paper studies the classical problem of 3D shape alignment, namely computing the relative rotation between two shapes (centered at the origin and normalized by scale) by aligning spherical harmonic coefficients of their spherical function representations. Unlike most prior work, which focuses on the regime in which the inputs have approximately the same shape, we focus on the more general and challenging setting in which the shapes may differ. Central to our approach is a stability analysis of spherical harmonic coefficients, which sheds light on how to align them for robust rotation estimation. We observe that due to symmetries, certain spherical harmonic coefficients may vanish. As a result, using a robust norm for alignment that automatically discards such coefficients offers more accurate rotation estimates than the widely used L2 norm. To enable efficient continuous optimization, we show how to analytically compute the Jacobian of spherical harmonic coefficients with respect to rotations. We also introduce an efficient approach for rotation initialization that requires only a sparse set of rotation samples. Experimental results show that our approach achieves better accuracy and efficiency compared to baseline approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信