V. Ehm, N. El Amrani, Y. Xie, L. Bastian, M. Gao, W. Wang, L. Sang, D. Cao, T. Weißberg, Z. Lähner, D. Cremers, F. Bernard
{"title":"超越完整形状:三维形状表面匹配算法定量评估的基准","authors":"V. Ehm, N. El Amrani, Y. Xie, L. Bastian, M. Gao, W. Wang, L. Sang, D. Cao, T. Weißberg, Z. Lähner, D. Cremers, F. Bernard","doi":"10.1111/cgf.70186","DOIUrl":null,"url":null,"abstract":"<p>Finding correspondences between 3D deformable shapes is an important and long-standing problem in geometry processing, computer vision, graphics, and beyond. While various shape matching datasets exist, they are mostly static or limited in size, restricting their adaptation to different problem settings, including both full and partial shape matching. In particular the existing partial shape matching datasets are small (fewer than 100 shapes) and thus unsuitable for data-hungry machine learning approaches. Moreover, the type of partiality present in existing datasets is often artificial and far from realistic. To address these limitations, we introduce a generic and flexible framework for the procedural generation of challenging full and partial shape matching datasets. Our framework allows the propagation of custom annotations across shapes, making it useful for various applications. By utilising our framework and manually creating cross-dataset correspondences between seven existing (complete geometry) shape matching datasets, we propose a new large benchmark <b>BeCoS</b> with a total of 2543 shapes. Based on this, we offer several challenging benchmark settings, covering both full and partial matching, for which we evaluate respective state-of-the-art methods as baselines. Visualisations and code of our benchmark can be found at: https://nafieamrani.github.io/BeCoS/.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70186","citationCount":"0","resultStr":"{\"title\":\"Beyond Complete Shapes: A Benchmark for Quantitative Evaluation of 3D Shape Surface Matching Algorithms\",\"authors\":\"V. Ehm, N. El Amrani, Y. Xie, L. Bastian, M. Gao, W. Wang, L. Sang, D. Cao, T. Weißberg, Z. Lähner, D. Cremers, F. Bernard\",\"doi\":\"10.1111/cgf.70186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Finding correspondences between 3D deformable shapes is an important and long-standing problem in geometry processing, computer vision, graphics, and beyond. While various shape matching datasets exist, they are mostly static or limited in size, restricting their adaptation to different problem settings, including both full and partial shape matching. In particular the existing partial shape matching datasets are small (fewer than 100 shapes) and thus unsuitable for data-hungry machine learning approaches. Moreover, the type of partiality present in existing datasets is often artificial and far from realistic. To address these limitations, we introduce a generic and flexible framework for the procedural generation of challenging full and partial shape matching datasets. Our framework allows the propagation of custom annotations across shapes, making it useful for various applications. By utilising our framework and manually creating cross-dataset correspondences between seven existing (complete geometry) shape matching datasets, we propose a new large benchmark <b>BeCoS</b> with a total of 2543 shapes. Based on this, we offer several challenging benchmark settings, covering both full and partial matching, for which we evaluate respective state-of-the-art methods as baselines. Visualisations and code of our benchmark can be found at: https://nafieamrani.github.io/BeCoS/.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"44 5\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70186\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70186\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70186","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Beyond Complete Shapes: A Benchmark for Quantitative Evaluation of 3D Shape Surface Matching Algorithms
Finding correspondences between 3D deformable shapes is an important and long-standing problem in geometry processing, computer vision, graphics, and beyond. While various shape matching datasets exist, they are mostly static or limited in size, restricting their adaptation to different problem settings, including both full and partial shape matching. In particular the existing partial shape matching datasets are small (fewer than 100 shapes) and thus unsuitable for data-hungry machine learning approaches. Moreover, the type of partiality present in existing datasets is often artificial and far from realistic. To address these limitations, we introduce a generic and flexible framework for the procedural generation of challenging full and partial shape matching datasets. Our framework allows the propagation of custom annotations across shapes, making it useful for various applications. By utilising our framework and manually creating cross-dataset correspondences between seven existing (complete geometry) shape matching datasets, we propose a new large benchmark BeCoS with a total of 2543 shapes. Based on this, we offer several challenging benchmark settings, covering both full and partial matching, for which we evaluate respective state-of-the-art methods as baselines. Visualisations and code of our benchmark can be found at: https://nafieamrani.github.io/BeCoS/.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.