{"title":"对称框架场的离散可积矩","authors":"J. Vekhter, Z. Chen, E. Vouga","doi":"10.1111/cgf.70193","DOIUrl":null,"url":null,"abstract":"<p>This paper studies the problem of unconstrained (e.g. not orthogonal or unit) symmetric frame field design in volumes. Our principal contribution is a novel (and theoretically well-founded) local integrability condition for frame fields represented as a triplet of symmetric tensors of second, fourth, and sixth order. We also formulate a novel smoothness energy for this representation. To validate our discritization, we study the problem of seamless parameterization of volumetric objects. We compare against baseline approaches by formulating a smooth, integrable, and approximately octahedral frame objective in our discritization. Our method is the first to solve these problems with automatic placement of singularities while also enforcing a symmetric proxy for local integrability as a hard constraint, achieving significantly higher quality parameterizations, in expectation, relative to other frame field design based approaches.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70193","citationCount":"0","resultStr":"{\"title\":\"Mint: Discretely Integrable Moments for Symmetric Frame Fields\",\"authors\":\"J. Vekhter, Z. Chen, E. Vouga\",\"doi\":\"10.1111/cgf.70193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies the problem of unconstrained (e.g. not orthogonal or unit) symmetric frame field design in volumes. Our principal contribution is a novel (and theoretically well-founded) local integrability condition for frame fields represented as a triplet of symmetric tensors of second, fourth, and sixth order. We also formulate a novel smoothness energy for this representation. To validate our discritization, we study the problem of seamless parameterization of volumetric objects. We compare against baseline approaches by formulating a smooth, integrable, and approximately octahedral frame objective in our discritization. Our method is the first to solve these problems with automatic placement of singularities while also enforcing a symmetric proxy for local integrability as a hard constraint, achieving significantly higher quality parameterizations, in expectation, relative to other frame field design based approaches.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"44 5\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70193\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70193\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70193","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Mint: Discretely Integrable Moments for Symmetric Frame Fields
This paper studies the problem of unconstrained (e.g. not orthogonal or unit) symmetric frame field design in volumes. Our principal contribution is a novel (and theoretically well-founded) local integrability condition for frame fields represented as a triplet of symmetric tensors of second, fourth, and sixth order. We also formulate a novel smoothness energy for this representation. To validate our discritization, we study the problem of seamless parameterization of volumetric objects. We compare against baseline approaches by formulating a smooth, integrable, and approximately octahedral frame objective in our discritization. Our method is the first to solve these problems with automatic placement of singularities while also enforcing a symmetric proxy for local integrability as a hard constraint, achieving significantly higher quality parameterizations, in expectation, relative to other frame field design based approaches.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.