基于噪声点和法线的贝叶斯三维形状重建

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
E. Pujol, A. Chica
{"title":"基于噪声点和法线的贝叶斯三维形状重建","authors":"E. Pujol,&nbsp;A. Chica","doi":"10.1111/cgf.70201","DOIUrl":null,"url":null,"abstract":"<p>Reconstructing three-dimensional shapes from point clouds remains a central challenge in geometry processing, particularly due to the inherent uncertainties in real-world data acquisition. In this work, we introduce a novel Bayesian framework that explicitly models and propagates uncertainty from both input points and their estimated normals. Our method incorporates the uncertainty of normals derived via Principal Component Analysis (PCA) from noisy input points. Building upon the Smooth Signed Distance (SSD) reconstruction algorithm, we integrate a smoothness prior based on the curvatures of the resulting implicit function following Gaussian behavior. Our method reconstructs a shape represented as a distribution, from which sampling and statistical queries regarding the shape's properties are possible. Additionally, because of the high cost of computing the variance of the resulting distribution, we develop efficient techniques for variance computation. Our approach thus combines two common steps of the geometry processing pipeline, normal estimation and surface reconstruction, while computing the uncertainty of the output of each of these steps.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70201","citationCount":"0","resultStr":"{\"title\":\"Bayesian 3D Shape Reconstruction from Noisy Points and Normals\",\"authors\":\"E. Pujol,&nbsp;A. Chica\",\"doi\":\"10.1111/cgf.70201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reconstructing three-dimensional shapes from point clouds remains a central challenge in geometry processing, particularly due to the inherent uncertainties in real-world data acquisition. In this work, we introduce a novel Bayesian framework that explicitly models and propagates uncertainty from both input points and their estimated normals. Our method incorporates the uncertainty of normals derived via Principal Component Analysis (PCA) from noisy input points. Building upon the Smooth Signed Distance (SSD) reconstruction algorithm, we integrate a smoothness prior based on the curvatures of the resulting implicit function following Gaussian behavior. Our method reconstructs a shape represented as a distribution, from which sampling and statistical queries regarding the shape's properties are possible. Additionally, because of the high cost of computing the variance of the resulting distribution, we develop efficient techniques for variance computation. Our approach thus combines two common steps of the geometry processing pipeline, normal estimation and surface reconstruction, while computing the uncertainty of the output of each of these steps.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"44 5\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70201\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70201\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70201","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

从点云重建三维形状仍然是几何处理的核心挑战,特别是由于现实世界数据采集中固有的不确定性。在这项工作中,我们引入了一个新的贝叶斯框架,该框架明确地对输入点及其估计的正态线的不确定性进行建模和传播。我们的方法结合了通过主成分分析(PCA)从噪声输入点导出的法线的不确定性。在平滑签名距离(SSD)重建算法的基础上,我们基于得到的隐函数的曲率来整合平滑先验。我们的方法重建了一个表示为分布的形状,从中可以对形状的属性进行抽样和统计查询。此外,由于计算结果分布的方差的成本很高,我们开发了有效的方差计算技术。因此,我们的方法结合了几何处理管道的两个常见步骤,法向估计和表面重建,同时计算每个步骤输出的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bayesian 3D Shape Reconstruction from Noisy Points and Normals

Bayesian 3D Shape Reconstruction from Noisy Points and Normals

Reconstructing three-dimensional shapes from point clouds remains a central challenge in geometry processing, particularly due to the inherent uncertainties in real-world data acquisition. In this work, we introduce a novel Bayesian framework that explicitly models and propagates uncertainty from both input points and their estimated normals. Our method incorporates the uncertainty of normals derived via Principal Component Analysis (PCA) from noisy input points. Building upon the Smooth Signed Distance (SSD) reconstruction algorithm, we integrate a smoothness prior based on the curvatures of the resulting implicit function following Gaussian behavior. Our method reconstructs a shape represented as a distribution, from which sampling and statistical queries regarding the shape's properties are possible. Additionally, because of the high cost of computing the variance of the resulting distribution, we develop efficient techniques for variance computation. Our approach thus combines two common steps of the geometry processing pipeline, normal estimation and surface reconstruction, while computing the uncertainty of the output of each of these steps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信