仿射热法

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Yousuf Soliman, Nicholas Sharp
{"title":"仿射热法","authors":"Yousuf Soliman,&nbsp;Nicholas Sharp","doi":"10.1111/cgf.70205","DOIUrl":null,"url":null,"abstract":"<p>This work presents the Affine Heat Method for computing logarithmic maps. These maps are local surface parameterizations defined by the direction and distance along shortest geodesic paths from a given source point, and arise in many geometric tasks from local texture mapping to geodesic distance-based optimization. Our main insight is to define a connection Laplacian with a homogeneous coordinate accounting for the translation between tangent coordinate frames; the action of short-time heat flow under this Laplacian gives both the direction and distance from the source, along shortest geodesics. The resulting numerical method is straightforward to implement, fast, and improves accuracy compared to past approaches. We present two variants of the method, one of which enables pre-computation for fast repeated solves, while the other resolves the map even near the cut locus in high detail. As with prior heat methods, our approach can be applied in any dimension and to any spatial discretization, including polygonal meshes and point clouds, which we demonstrate along with applications of the method.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Affine Heat Method\",\"authors\":\"Yousuf Soliman,&nbsp;Nicholas Sharp\",\"doi\":\"10.1111/cgf.70205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work presents the Affine Heat Method for computing logarithmic maps. These maps are local surface parameterizations defined by the direction and distance along shortest geodesic paths from a given source point, and arise in many geometric tasks from local texture mapping to geodesic distance-based optimization. Our main insight is to define a connection Laplacian with a homogeneous coordinate accounting for the translation between tangent coordinate frames; the action of short-time heat flow under this Laplacian gives both the direction and distance from the source, along shortest geodesics. The resulting numerical method is straightforward to implement, fast, and improves accuracy compared to past approaches. We present two variants of the method, one of which enables pre-computation for fast repeated solves, while the other resolves the map even near the cut locus in high detail. As with prior heat methods, our approach can be applied in any dimension and to any spatial discretization, including polygonal meshes and point clouds, which we demonstrate along with applications of the method.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"44 5\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70205\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70205","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了计算对数映射的仿射热方法。这些映射是由从给定源点出发的最短测地线路径的方向和距离定义的局部表面参数化,并且出现在从局部纹理映射到基于测地线距离的优化的许多几何任务中。我们的主要观点是定义一个具有齐次坐标的连接拉普拉斯函数,用于计算切线坐标系之间的平移;在这个拉普拉斯函数下,短时热流的作用给出了沿最短测地线到热源的方向和距离。与过去的方法相比,所得到的数值方法易于实现,速度快,并且提高了精度。我们提出了该方法的两种变体,其中一种可以实现快速重复求解的预计算,而另一种甚至可以在切割轨迹附近高细节地解析地图。与先前的热方法一样,我们的方法可以应用于任何维度和任何空间离散化,包括多边形网格和点云,我们演示了该方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Affine Heat Method

This work presents the Affine Heat Method for computing logarithmic maps. These maps are local surface parameterizations defined by the direction and distance along shortest geodesic paths from a given source point, and arise in many geometric tasks from local texture mapping to geodesic distance-based optimization. Our main insight is to define a connection Laplacian with a homogeneous coordinate accounting for the translation between tangent coordinate frames; the action of short-time heat flow under this Laplacian gives both the direction and distance from the source, along shortest geodesics. The resulting numerical method is straightforward to implement, fast, and improves accuracy compared to past approaches. We present two variants of the method, one of which enables pre-computation for fast repeated solves, while the other resolves the map even near the cut locus in high detail. As with prior heat methods, our approach can be applied in any dimension and to any spatial discretization, including polygonal meshes and point clouds, which we demonstrate along with applications of the method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信