局域非线性对非线性Schrödinger方程的扰动

IF 1.4 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Gong Chen, Jiaqi Liu, Yuanhong Tian
{"title":"局域非线性对非线性Schrödinger方程的扰动","authors":"Gong Chen,&nbsp;Jiaqi Liu,&nbsp;Yuanhong Tian","doi":"10.1007/s11005-025-01984-3","DOIUrl":null,"url":null,"abstract":"<div><p>We revisit the perturbative theory of infinite dimensional integrable systems developed by P. Deift and X. Zhou [8], aiming to provide new and simpler proofs of some key <span>\\(L^\\infty \\)</span> bounds and <span>\\(L^p\\)</span> <i>a priori</i> estimates. Our proofs emphasizes a further step towards understanding focussing problems and extends the applicability to other integrable models. As a concrete application, we examine the perturbation of the one-dimensional defocussing cubic nonlinear Schrödinger equation by a localized higher-order term. We introduce improved estimates to control the power of the perturbative term and demonstrate that the perturbed equation exhibits the same long-time behavior as the completely integrable nonlinear Schrödinger equation.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"perturbation of the nonlinear Schrödinger equation by a localized nonlinearity\",\"authors\":\"Gong Chen,&nbsp;Jiaqi Liu,&nbsp;Yuanhong Tian\",\"doi\":\"10.1007/s11005-025-01984-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We revisit the perturbative theory of infinite dimensional integrable systems developed by P. Deift and X. Zhou [8], aiming to provide new and simpler proofs of some key <span>\\\\(L^\\\\infty \\\\)</span> bounds and <span>\\\\(L^p\\\\)</span> <i>a priori</i> estimates. Our proofs emphasizes a further step towards understanding focussing problems and extends the applicability to other integrable models. As a concrete application, we examine the perturbation of the one-dimensional defocussing cubic nonlinear Schrödinger equation by a localized higher-order term. We introduce improved estimates to control the power of the perturbative term and demonstrate that the perturbed equation exhibits the same long-time behavior as the completely integrable nonlinear Schrödinger equation.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 5\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01984-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01984-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们重新研究了P. Deift和X. Zhou[8]提出的无限维可积系统的微扰理论,旨在提供一些关键\(L^\infty \)界和\(L^p\)先验估计的新的和更简单的证明。我们的证明强调了进一步理解聚焦问题,并扩展了对其他可积模型的适用性。作为一个具体应用,我们研究了局部高阶项对一维散焦三次非线性Schrödinger方程的扰动。我们引入改进的估计来控制扰动项的幂,并证明了扰动方程与完全可积非线性Schrödinger方程具有相同的长时间行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
perturbation of the nonlinear Schrödinger equation by a localized nonlinearity

We revisit the perturbative theory of infinite dimensional integrable systems developed by P. Deift and X. Zhou [8], aiming to provide new and simpler proofs of some key \(L^\infty \) bounds and \(L^p\) a priori estimates. Our proofs emphasizes a further step towards understanding focussing problems and extends the applicability to other integrable models. As a concrete application, we examine the perturbation of the one-dimensional defocussing cubic nonlinear Schrödinger equation by a localized higher-order term. We introduce improved estimates to control the power of the perturbative term and demonstrate that the perturbed equation exhibits the same long-time behavior as the completely integrable nonlinear Schrödinger equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信