{"title":"磁流体动力学方程的松弛表示和变分泊松结构","authors":"Oleg I. Morozov","doi":"10.1007/s13324-025-01119-w","DOIUrl":null,"url":null,"abstract":"<div><p>We find two Lax representations for the reduced magnetohydrodynamics equations (<span>rmhd</span>) and construct a local variational Poisson structure (a Hamiltonian operator) for them. Its inverse defines a nonlocal symplectic structure for the same equations. We describe the action of both operators on the second-order cosymmetries and on the infinitesimal contact symmetries of <span>rmhd</span>, respectively. The reduction of <span>rmhd</span> by the symmetry of shifts along the <i>z</i>-axis coincides with the equations of two-dimensional ideal magnetohydrodynamics (<span>imhd</span>). Applied to the Lax representations and the variational Poisson structure of <span>rmhd</span>, the reduction provides analogous constructions for <span>imhd</span>.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lax representations and variational Poisson structures for magnetohydrodynamics equations\",\"authors\":\"Oleg I. Morozov\",\"doi\":\"10.1007/s13324-025-01119-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We find two Lax representations for the reduced magnetohydrodynamics equations (<span>rmhd</span>) and construct a local variational Poisson structure (a Hamiltonian operator) for them. Its inverse defines a nonlocal symplectic structure for the same equations. We describe the action of both operators on the second-order cosymmetries and on the infinitesimal contact symmetries of <span>rmhd</span>, respectively. The reduction of <span>rmhd</span> by the symmetry of shifts along the <i>z</i>-axis coincides with the equations of two-dimensional ideal magnetohydrodynamics (<span>imhd</span>). Applied to the Lax representations and the variational Poisson structure of <span>rmhd</span>, the reduction provides analogous constructions for <span>imhd</span>.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01119-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01119-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Lax representations and variational Poisson structures for magnetohydrodynamics equations
We find two Lax representations for the reduced magnetohydrodynamics equations (rmhd) and construct a local variational Poisson structure (a Hamiltonian operator) for them. Its inverse defines a nonlocal symplectic structure for the same equations. We describe the action of both operators on the second-order cosymmetries and on the infinitesimal contact symmetries of rmhd, respectively. The reduction of rmhd by the symmetry of shifts along the z-axis coincides with the equations of two-dimensional ideal magnetohydrodynamics (imhd). Applied to the Lax representations and the variational Poisson structure of rmhd, the reduction provides analogous constructions for imhd.
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.