磁流体动力学方程的松弛表示和变分泊松结构

IF 1.6 3区 数学 Q1 MATHEMATICS
Oleg I. Morozov
{"title":"磁流体动力学方程的松弛表示和变分泊松结构","authors":"Oleg I. Morozov","doi":"10.1007/s13324-025-01119-w","DOIUrl":null,"url":null,"abstract":"<div><p>We find two Lax representations for the reduced magnetohydrodynamics equations (<span>rmhd</span>) and construct a local variational Poisson structure (a Hamiltonian operator) for them. Its inverse defines a nonlocal symplectic structure for the same equations. We describe the action of both operators on the second-order cosymmetries and on the infinitesimal contact symmetries of <span>rmhd</span>, respectively. The reduction of <span>rmhd</span> by the symmetry of shifts along the <i>z</i>-axis coincides with the equations of two-dimensional ideal magnetohydrodynamics (<span>imhd</span>). Applied to the Lax representations and the variational Poisson structure of <span>rmhd</span>, the reduction provides analogous constructions for <span>imhd</span>.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lax representations and variational Poisson structures for magnetohydrodynamics equations\",\"authors\":\"Oleg I. Morozov\",\"doi\":\"10.1007/s13324-025-01119-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We find two Lax representations for the reduced magnetohydrodynamics equations (<span>rmhd</span>) and construct a local variational Poisson structure (a Hamiltonian operator) for them. Its inverse defines a nonlocal symplectic structure for the same equations. We describe the action of both operators on the second-order cosymmetries and on the infinitesimal contact symmetries of <span>rmhd</span>, respectively. The reduction of <span>rmhd</span> by the symmetry of shifts along the <i>z</i>-axis coincides with the equations of two-dimensional ideal magnetohydrodynamics (<span>imhd</span>). Applied to the Lax representations and the variational Poisson structure of <span>rmhd</span>, the reduction provides analogous constructions for <span>imhd</span>.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01119-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01119-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们找到了简化磁流体动力学方程(rmhd)的两个Lax表示,并为它们构造了一个局部变分泊松结构(哈密顿算子)。它的逆定义了同一方程的非局部辛结构。我们分别描述了这两个算子在rmhd的二阶共对称和无穷小接触对称上的作用。通过沿z轴移动的对称性来减少rmhd与二维理想磁流体动力学方程(imhd)一致。应用于rmhd的Lax表示和变分泊松结构,提供了imhd的类似结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lax representations and variational Poisson structures for magnetohydrodynamics equations

We find two Lax representations for the reduced magnetohydrodynamics equations (rmhd) and construct a local variational Poisson structure (a Hamiltonian operator) for them. Its inverse defines a nonlocal symplectic structure for the same equations. We describe the action of both operators on the second-order cosymmetries and on the infinitesimal contact symmetries of rmhd, respectively. The reduction of rmhd by the symmetry of shifts along the z-axis coincides with the equations of two-dimensional ideal magnetohydrodynamics (imhd). Applied to the Lax representations and the variational Poisson structure of rmhd, the reduction provides analogous constructions for imhd.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信