通过可控温度编码实现多种可见光到热图像的转换

IF 9.7 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lei Zhao;Mengwei Li;Bo Li;Xingxing Wei
{"title":"通过可控温度编码实现多种可见光到热图像的转换","authors":"Lei Zhao;Mengwei Li;Bo Li;Xingxing Wei","doi":"10.1109/TMM.2025.3543053","DOIUrl":null,"url":null,"abstract":"Translating readily available visible (VIS) images into thermal infrared (TIR) images effectively alleviates the shortage of TIR data. While current methods have yielded commendable results, they fall short in generating diverse and realistic thermal infrared images, primarily due to insufficient consideration of temperature variations. In this paper, we propose a Thermally Controlled GAN (TC-GAN) that leverages VIS images to generate diverse TIR images, with the ability to control the relative temperatures of multiple objects, particularly those with temperature variations. Firstly, we introduce the physical coding module, which employs a conditional variational autoencoder GAN to learn the distributions of relative temperature information for the objects and environmental state information. Then, the physical information can be obtained by sampling the distribution. When this information is fused with the visible image, it facilitates the generation of diverse TIR images. To ensure authenticity and strengthen the physical constraints across different regions of the image, we introduce a self-attention mechanism in the generator that prioritizes the relative temperature relationships within the image. Additionally, we utilize a local discriminator that focuses on objects with actively changing temperatures and their interactions with the surrounding environment, thereby reducing the discontinuity between the target and the background. Experiments on the Drone Vehicle and AVIID datasets show that our approach outperforms mainstream diversity generation methods in terms of authenticity and diversity.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"5685-5695"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diverse Visible-to-Thermal Image Translation via Controllable Temperature Encoding\",\"authors\":\"Lei Zhao;Mengwei Li;Bo Li;Xingxing Wei\",\"doi\":\"10.1109/TMM.2025.3543053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Translating readily available visible (VIS) images into thermal infrared (TIR) images effectively alleviates the shortage of TIR data. While current methods have yielded commendable results, they fall short in generating diverse and realistic thermal infrared images, primarily due to insufficient consideration of temperature variations. In this paper, we propose a Thermally Controlled GAN (TC-GAN) that leverages VIS images to generate diverse TIR images, with the ability to control the relative temperatures of multiple objects, particularly those with temperature variations. Firstly, we introduce the physical coding module, which employs a conditional variational autoencoder GAN to learn the distributions of relative temperature information for the objects and environmental state information. Then, the physical information can be obtained by sampling the distribution. When this information is fused with the visible image, it facilitates the generation of diverse TIR images. To ensure authenticity and strengthen the physical constraints across different regions of the image, we introduce a self-attention mechanism in the generator that prioritizes the relative temperature relationships within the image. Additionally, we utilize a local discriminator that focuses on objects with actively changing temperatures and their interactions with the surrounding environment, thereby reducing the discontinuity between the target and the background. Experiments on the Drone Vehicle and AVIID datasets show that our approach outperforms mainstream diversity generation methods in terms of authenticity and diversity.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"5685-5695\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10897888/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10897888/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

将现成的可见光(VIS)图像转换为热红外(TIR)图像,有效地缓解了热红外(TIR)数据的不足。虽然目前的方法已经取得了令人称赞的结果,但它们在生成多样化和逼真的热红外图像方面存在不足,主要原因是没有充分考虑温度变化。在本文中,我们提出了一种热控制GAN (TC-GAN),它利用VIS图像生成不同的TIR图像,能够控制多个物体的相对温度,特别是那些温度变化的物体。首先,我们引入了物理编码模块,该模块采用条件变分自编码器GAN来学习物体的相对温度信息和环境状态信息的分布。然后,对分布进行采样,得到物理信息。当这些信息与可见光图像相融合时,就可以方便地生成多样化的TIR图像。为了确保真实性并加强图像不同区域之间的物理约束,我们在生成器中引入了一种自关注机制,该机制优先考虑图像内的相对温度关系。此外,我们利用一个局部鉴别器,专注于温度主动变化的物体及其与周围环境的相互作用,从而减少目标和背景之间的不连续。在无人机和AVIID数据集上的实验表明,我们的方法在真实性和多样性方面优于主流的多样性生成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diverse Visible-to-Thermal Image Translation via Controllable Temperature Encoding
Translating readily available visible (VIS) images into thermal infrared (TIR) images effectively alleviates the shortage of TIR data. While current methods have yielded commendable results, they fall short in generating diverse and realistic thermal infrared images, primarily due to insufficient consideration of temperature variations. In this paper, we propose a Thermally Controlled GAN (TC-GAN) that leverages VIS images to generate diverse TIR images, with the ability to control the relative temperatures of multiple objects, particularly those with temperature variations. Firstly, we introduce the physical coding module, which employs a conditional variational autoencoder GAN to learn the distributions of relative temperature information for the objects and environmental state information. Then, the physical information can be obtained by sampling the distribution. When this information is fused with the visible image, it facilitates the generation of diverse TIR images. To ensure authenticity and strengthen the physical constraints across different regions of the image, we introduce a self-attention mechanism in the generator that prioritizes the relative temperature relationships within the image. Additionally, we utilize a local discriminator that focuses on objects with actively changing temperatures and their interactions with the surrounding environment, thereby reducing the discontinuity between the target and the background. Experiments on the Drone Vehicle and AVIID datasets show that our approach outperforms mainstream diversity generation methods in terms of authenticity and diversity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信