伪标签驱动的近海到近海无监督SAR图像船舶分割框架

IF 4.4
Wentao Li;Xinyu Wang;Haixia Xu;Liming Yuan;Furong Shi;Xianbin Wen;Jiao Liu
{"title":"伪标签驱动的近海到近海无监督SAR图像船舶分割框架","authors":"Wentao Li;Xinyu Wang;Haixia Xu;Liming Yuan;Furong Shi;Xianbin Wen;Jiao Liu","doi":"10.1109/LGRS.2025.3595937","DOIUrl":null,"url":null,"abstract":"Recently, unsupervised ship segmentation methods for synthetic aperture radar (SAR) images have achieved promising results in offshore scenes. However, these methods generate a large number of false alarms in inshore scenes. To address this issue, we propose the pseudo-label-driven framework for offshore to inshore SAR image ship segmentation (PLDF-S3), which leverages ship segmentation results from offshore scenes to assist inshore ship segmentation. In particular, to account for the anisotropy of ships, which are characterized by a dominant long-axis direction, we design a directional feature enhancement module (DFEM) in PLDF-S3 to extract ship features with varying orientations. Additionally, due to the diverse size variations of ships in SAR images, we propose a hierarchical context enhancement module (HCEM) to capture ship features at different scales. Experimental results show that the proposed unsupervised PLDF-S3 achieves comparable segmentation performance than several supervised methods under challenging inshore scenarios.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PLDF-S3: Pseudo-Label-Driven Framework for Offshore to Inshore Unsupervised SAR Image Ship Segmentation\",\"authors\":\"Wentao Li;Xinyu Wang;Haixia Xu;Liming Yuan;Furong Shi;Xianbin Wen;Jiao Liu\",\"doi\":\"10.1109/LGRS.2025.3595937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, unsupervised ship segmentation methods for synthetic aperture radar (SAR) images have achieved promising results in offshore scenes. However, these methods generate a large number of false alarms in inshore scenes. To address this issue, we propose the pseudo-label-driven framework for offshore to inshore SAR image ship segmentation (PLDF-S3), which leverages ship segmentation results from offshore scenes to assist inshore ship segmentation. In particular, to account for the anisotropy of ships, which are characterized by a dominant long-axis direction, we design a directional feature enhancement module (DFEM) in PLDF-S3 to extract ship features with varying orientations. Additionally, due to the diverse size variations of ships in SAR images, we propose a hierarchical context enhancement module (HCEM) to capture ship features at different scales. Experimental results show that the proposed unsupervised PLDF-S3 achieves comparable segmentation performance than several supervised methods under challenging inshore scenarios.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11113265/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11113265/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,合成孔径雷达(SAR)图像的无监督船舶分割方法在近海场景中取得了良好的效果。然而,这些方法在近岸场景中产生了大量的虚警。为了解决这个问题,我们提出了用于近海到近岸SAR图像船舶分割的伪标签驱动框架(PLDF-S3),该框架利用海上场景的船舶分割结果来辅助近岸船舶分割。针对船舶以长轴方向为主要特征的各向异性,我们在PLDF-S3中设计了方向性特征增强模块(directional feature enhancement module, DFEM)来提取不同方向的船舶特征。此外,由于SAR图像中船舶的不同尺寸变化,我们提出了一个分层上下文增强模块(HCEM)来捕获不同尺度的船舶特征。实验结果表明,在具有挑战性的近海场景下,所提出的无监督PLDF-S3分割方法的分割性能与几种有监督方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PLDF-S3: Pseudo-Label-Driven Framework for Offshore to Inshore Unsupervised SAR Image Ship Segmentation
Recently, unsupervised ship segmentation methods for synthetic aperture radar (SAR) images have achieved promising results in offshore scenes. However, these methods generate a large number of false alarms in inshore scenes. To address this issue, we propose the pseudo-label-driven framework for offshore to inshore SAR image ship segmentation (PLDF-S3), which leverages ship segmentation results from offshore scenes to assist inshore ship segmentation. In particular, to account for the anisotropy of ships, which are characterized by a dominant long-axis direction, we design a directional feature enhancement module (DFEM) in PLDF-S3 to extract ship features with varying orientations. Additionally, due to the diverse size variations of ships in SAR images, we propose a hierarchical context enhancement module (HCEM) to capture ship features at different scales. Experimental results show that the proposed unsupervised PLDF-S3 achieves comparable segmentation performance than several supervised methods under challenging inshore scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信