基于SAR图像的小型船舶目标检测网络SOD-Net

IF 4.4
Junpeng Ai;Liang Luo;Shijie Wang;Liandong Hao
{"title":"基于SAR图像的小型船舶目标检测网络SOD-Net","authors":"Junpeng Ai;Liang Luo;Shijie Wang;Liandong Hao","doi":"10.1109/LGRS.2025.3602092","DOIUrl":null,"url":null,"abstract":"In ship detection using synthetic aperture radar (SAR), small targets and complex background noise remain key challenges that restrict the detection performance. In this letter, we propose a small-target ship detection network based on a small object detection network (SOD-Net) using SAR images. First, we construct a U-shaped feature preextraction network and adopt a spatial pixel attention (SPA) mechanism to enhance the initial feature representation ability. Second, a pinwheel convolution (PC) convolutional neural network (CNN)-based cross-scale feature fusion (CCFF) module is designed. By expanding the receptive field through asymmetric convolution kernels and reducing the parameter scale, features of small targets are properly captured. Evaluation results show that the proposed SOD-Net achieves evaluation accuracies of 98.4% and 91.0% on the benchmark SSDD and HRSID datasets (mean average precision (mAP) at an intersection over union of 0.5), respectively, with only 28 million parameters, thus outperforming state-of-the-art models (e.g., YOLOv8 and D-FINE). Visual analysis confirmed that the SOD-Net is robust in scenarios, including complex sea conditions, dense port berthing, and noise interference, thereby providing an accurate and efficient solution for SAR maritime monitoring.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOD-Net: A Small Ship Object Detection Network for SAR Images\",\"authors\":\"Junpeng Ai;Liang Luo;Shijie Wang;Liandong Hao\",\"doi\":\"10.1109/LGRS.2025.3602092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In ship detection using synthetic aperture radar (SAR), small targets and complex background noise remain key challenges that restrict the detection performance. In this letter, we propose a small-target ship detection network based on a small object detection network (SOD-Net) using SAR images. First, we construct a U-shaped feature preextraction network and adopt a spatial pixel attention (SPA) mechanism to enhance the initial feature representation ability. Second, a pinwheel convolution (PC) convolutional neural network (CNN)-based cross-scale feature fusion (CCFF) module is designed. By expanding the receptive field through asymmetric convolution kernels and reducing the parameter scale, features of small targets are properly captured. Evaluation results show that the proposed SOD-Net achieves evaluation accuracies of 98.4% and 91.0% on the benchmark SSDD and HRSID datasets (mean average precision (mAP) at an intersection over union of 0.5), respectively, with only 28 million parameters, thus outperforming state-of-the-art models (e.g., YOLOv8 and D-FINE). Visual analysis confirmed that the SOD-Net is robust in scenarios, including complex sea conditions, dense port berthing, and noise interference, thereby providing an accurate and efficient solution for SAR maritime monitoring.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11137369/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11137369/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在合成孔径雷达(SAR)舰船检测中,小目标和复杂背景噪声是制约探测性能的关键问题。在本文中,我们提出了一种基于SAR图像的小目标检测网络(SOD-Net)的小目标船舶检测网络。首先,构建u型特征预提取网络,采用空间像素关注(SPA)机制增强初始特征表示能力;其次,设计了一个基于PC卷积神经网络(CNN)的跨尺度特征融合(CCFF)模块。通过非对称卷积核扩展接收野和减小参数尺度,可以很好地捕获小目标的特征。评价结果表明,所提出的SOD-Net在基准的SSDD和HRSID数据集(交叉集的平均精度(mAP)为0.5)上的评价准确率分别为98.4%和91.0%,参数仅为2800万个,优于最先进的模型(如YOLOv8和D-FINE)。可视化分析证实,SOD-Net在复杂海况、港口密集靠泊和噪声干扰等情况下具有鲁棒性,从而为SAR海上监测提供了准确高效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOD-Net: A Small Ship Object Detection Network for SAR Images
In ship detection using synthetic aperture radar (SAR), small targets and complex background noise remain key challenges that restrict the detection performance. In this letter, we propose a small-target ship detection network based on a small object detection network (SOD-Net) using SAR images. First, we construct a U-shaped feature preextraction network and adopt a spatial pixel attention (SPA) mechanism to enhance the initial feature representation ability. Second, a pinwheel convolution (PC) convolutional neural network (CNN)-based cross-scale feature fusion (CCFF) module is designed. By expanding the receptive field through asymmetric convolution kernels and reducing the parameter scale, features of small targets are properly captured. Evaluation results show that the proposed SOD-Net achieves evaluation accuracies of 98.4% and 91.0% on the benchmark SSDD and HRSID datasets (mean average precision (mAP) at an intersection over union of 0.5), respectively, with only 28 million parameters, thus outperforming state-of-the-art models (e.g., YOLOv8 and D-FINE). Visual analysis confirmed that the SOD-Net is robust in scenarios, including complex sea conditions, dense port berthing, and noise interference, thereby providing an accurate and efficient solution for SAR maritime monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信