基于时空关注和多尺度融合的碳源汇语义变化检测

IF 4.4
Yang Liu;Haige Xu;Wenqian Cao;Cheng Liu
{"title":"基于时空关注和多尺度融合的碳源汇语义变化检测","authors":"Yang Liu;Haige Xu;Wenqian Cao;Cheng Liu","doi":"10.1109/LGRS.2025.3597281","DOIUrl":null,"url":null,"abstract":"High-resolution remote sensing image semantic change detection (SCD) helps to accurately capture the spatial distribution and dynamic evolution of carbon sources and sinks by identifying changes in land cover types. However, existing methods suffer from the loss of spatial details and insufficient ability to model global features. Therefore, this letter proposes an SCD model based on spatiotemporal attention perception and multiscale fusion (SC-SCDNet). The model introduces a multiscale efficient cross-attention (MCA) block in the encoder to bridge the semantic gap, and integrates a feature enhancement module (FEM) to enhance the semantic expression ability of small targets using multibranch dilated convolution. In addition, a spatiotemporal channel window interaction module (TBCM) is designed to capture global information from both spatial and channel dimensions, enhancing spatial detail expression. The experimental results show that SC-SCDNet achieves the most advanced performance on SECOND and Landsat-SCD datasets, providing a better technical scheme for carbon sources and carbon sinks change detection.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Change Detection of Carbon Sources and Sinks via Spatiotemporal Attention and Multiscale Fusion\",\"authors\":\"Yang Liu;Haige Xu;Wenqian Cao;Cheng Liu\",\"doi\":\"10.1109/LGRS.2025.3597281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-resolution remote sensing image semantic change detection (SCD) helps to accurately capture the spatial distribution and dynamic evolution of carbon sources and sinks by identifying changes in land cover types. However, existing methods suffer from the loss of spatial details and insufficient ability to model global features. Therefore, this letter proposes an SCD model based on spatiotemporal attention perception and multiscale fusion (SC-SCDNet). The model introduces a multiscale efficient cross-attention (MCA) block in the encoder to bridge the semantic gap, and integrates a feature enhancement module (FEM) to enhance the semantic expression ability of small targets using multibranch dilated convolution. In addition, a spatiotemporal channel window interaction module (TBCM) is designed to capture global information from both spatial and channel dimensions, enhancing spatial detail expression. The experimental results show that SC-SCDNet achieves the most advanced performance on SECOND and Landsat-SCD datasets, providing a better technical scheme for carbon sources and carbon sinks change detection.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11121657/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11121657/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高分辨率遥感图像语义变化检测(SCD)通过识别土地覆盖类型的变化,有助于准确捕捉碳源和碳汇的空间分布和动态演变。然而,现有的方法存在空间细节缺失和模拟全局特征能力不足的问题。因此,本文提出了一种基于时空注意感知和多尺度融合的SCD模型(SC-SCDNet)。该模型在编码器中引入了多尺度高效交叉注意块(MCA)来弥补语义缺口,并集成了特征增强模块(FEM),利用多分支展开卷积增强小目标的语义表达能力。此外,设计了时空通道窗口交互模块(TBCM),从空间和通道两个维度捕获全局信息,增强空间细节表达。实验结果表明,SC-SCDNet在SECOND和Landsat-SCD数据集上实现了最先进的性能,为碳源和碳汇变化检测提供了较好的技术方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Change Detection of Carbon Sources and Sinks via Spatiotemporal Attention and Multiscale Fusion
High-resolution remote sensing image semantic change detection (SCD) helps to accurately capture the spatial distribution and dynamic evolution of carbon sources and sinks by identifying changes in land cover types. However, existing methods suffer from the loss of spatial details and insufficient ability to model global features. Therefore, this letter proposes an SCD model based on spatiotemporal attention perception and multiscale fusion (SC-SCDNet). The model introduces a multiscale efficient cross-attention (MCA) block in the encoder to bridge the semantic gap, and integrates a feature enhancement module (FEM) to enhance the semantic expression ability of small targets using multibranch dilated convolution. In addition, a spatiotemporal channel window interaction module (TBCM) is designed to capture global information from both spatial and channel dimensions, enhancing spatial detail expression. The experimental results show that SC-SCDNet achieves the most advanced performance on SECOND and Landsat-SCD datasets, providing a better technical scheme for carbon sources and carbon sinks change detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信