Nguyen Thi Thu Huyen , Nguyen Thi Kim Son , Hoang Thi Phuong Thao , Nguyen Phuong Dong
{"title":"广义线性相关模糊空间中模糊分数阶演化方程的可观测性","authors":"Nguyen Thi Thu Huyen , Nguyen Thi Kim Son , Hoang Thi Phuong Thao , Nguyen Phuong Dong","doi":"10.1016/j.fss.2025.109573","DOIUrl":null,"url":null,"abstract":"<div><div>The work is devoted to studying the observability of fuzzy fractional evolution equations in the space of generalized linearly correlated fuzzy numbers, namely the space <span><math><mrow><mi>LC</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Firstly, we develop an analysis of functions taking values in <span><math><mrow><mi>LC</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Next, we present some conditions to ensure that the Cauchy problem for the proposed fuzzy fractional evolution equations admits a unique integral solution. Furthermore, by constructing an appropriate observability Gramian matrix, we obtain a sufficient condition such that the proposed fuzzy fractional evolution equations are observable. The concepts of derivative, fractional derivative and integral of the linearly correlated fuzzy functions in the space <span><math><mrow><mi>LC</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> are introduced via the construction of the mapping <span><math><mi>ψ</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><mrow><mi>LC</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. The necessary and sufficient conditions for the mapping <em>ψ</em> to be an isomorphism are also mentioned.</div></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":"520 ","pages":"Article 109573"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The observability of fuzzy fractional evolution equations in the generalized linearly correlated fuzzy spaces\",\"authors\":\"Nguyen Thi Thu Huyen , Nguyen Thi Kim Son , Hoang Thi Phuong Thao , Nguyen Phuong Dong\",\"doi\":\"10.1016/j.fss.2025.109573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The work is devoted to studying the observability of fuzzy fractional evolution equations in the space of generalized linearly correlated fuzzy numbers, namely the space <span><math><mrow><mi>LC</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Firstly, we develop an analysis of functions taking values in <span><math><mrow><mi>LC</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Next, we present some conditions to ensure that the Cauchy problem for the proposed fuzzy fractional evolution equations admits a unique integral solution. Furthermore, by constructing an appropriate observability Gramian matrix, we obtain a sufficient condition such that the proposed fuzzy fractional evolution equations are observable. The concepts of derivative, fractional derivative and integral of the linearly correlated fuzzy functions in the space <span><math><mrow><mi>LC</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> are introduced via the construction of the mapping <span><math><mi>ψ</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><mrow><mi>LC</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. The necessary and sufficient conditions for the mapping <em>ψ</em> to be an isomorphism are also mentioned.</div></div>\",\"PeriodicalId\":55130,\"journal\":{\"name\":\"Fuzzy Sets and Systems\",\"volume\":\"520 \",\"pages\":\"Article 109573\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Sets and Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165011425003124\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011425003124","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
The observability of fuzzy fractional evolution equations in the generalized linearly correlated fuzzy spaces
The work is devoted to studying the observability of fuzzy fractional evolution equations in the space of generalized linearly correlated fuzzy numbers, namely the space . Firstly, we develop an analysis of functions taking values in . Next, we present some conditions to ensure that the Cauchy problem for the proposed fuzzy fractional evolution equations admits a unique integral solution. Furthermore, by constructing an appropriate observability Gramian matrix, we obtain a sufficient condition such that the proposed fuzzy fractional evolution equations are observable. The concepts of derivative, fractional derivative and integral of the linearly correlated fuzzy functions in the space are introduced via the construction of the mapping . The necessary and sufficient conditions for the mapping ψ to be an isomorphism are also mentioned.
期刊介绍:
Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies.
In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.