二尖瓣干预对左心室血流动力学的影响:能量损失和血流动力学的见解

IF 1.9
Shuyi Feng MD , Hongping Wang PhD , Xinyi He PhD , Pengxu Kong MD , Fan Wu PhD , Shizhao Wang PhD , Xiangbin Pan MD , Guowei He PhD
{"title":"二尖瓣干预对左心室血流动力学的影响:能量损失和血流动力学的见解","authors":"Shuyi Feng MD ,&nbsp;Hongping Wang PhD ,&nbsp;Xinyi He PhD ,&nbsp;Pengxu Kong MD ,&nbsp;Fan Wu PhD ,&nbsp;Shizhao Wang PhD ,&nbsp;Xiangbin Pan MD ,&nbsp;Guowei He PhD","doi":"10.1016/j.xjon.2025.06.012","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>Left ventricular vortex dynamics play a crucial role in cardiac function but are significantly altered by mitral valve diseases or surgical interventions. Such hemodynamic changes may lead to maladaptive intracardiac vortices, potentially triggering pathways associated with progressive left ventricular remodeling and thrombosis. This study assessed left ventricular hemodynamics under both physiological and pathological conditions using a biohybrid in vitro platform, aiming to analyze the impact of these conditions on cardiac function.</div></div><div><h3>Methods</h3><div>An in vitro platform was established to simulate 6 mitral valve conditions: healthy, mitral regurgitation, bioprosthetic valve replacement, mechanical valve replacement (in 2 orientations), and transcatheter mitral valve edge-to-edge repair. Flow fields within the left ventricle were captured using 4-dimensional particle image velocimetry, including mean flow fields, vortex depth, vortex transversal position, viscous shear stress, and energy dissipation.</div></div><div><h3>Results</h3><div>Mitral regurgitation preserved vortex structure compared with healthy conditions. Mechanical valves altered vortex direction and reduced vortex transversal position (0.66-0.47, <em>P</em> &lt; .001), potentially impairing pump efficiency and increasing cardiac workload. Bioprosthetic valves displaced the vortex away from the apex, decreasing vortex depth (0.64-0.32, <em>P</em> &lt; .001), which may elevate apical thrombosis risk. Transcatheter mitral valve edge-to-edge repair reduced mitral regurgitation but significantly increased energy dissipation and viscous shear stress, indicating higher cardiac energy expenditure and disturbed flow.</div></div><div><h3>Conclusions</h3><div>Preserving native valve function optimizes left ventricular hemodynamics, whereas valve replacements and transcatheter mitral valve edge-to-edge repair alter flow patterns, increasing cardiac workload and thrombotic risks. These findings underscore the importance of assessing left ventricular flow dynamics in the treatment of mitral regurgitation.</div></div>","PeriodicalId":74032,"journal":{"name":"JTCVS open","volume":"26 ","pages":"Pages 104-114"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of mitral valve interventions on left ventricular hemodynamics: Insights into energy loss and flow dynamics\",\"authors\":\"Shuyi Feng MD ,&nbsp;Hongping Wang PhD ,&nbsp;Xinyi He PhD ,&nbsp;Pengxu Kong MD ,&nbsp;Fan Wu PhD ,&nbsp;Shizhao Wang PhD ,&nbsp;Xiangbin Pan MD ,&nbsp;Guowei He PhD\",\"doi\":\"10.1016/j.xjon.2025.06.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><div>Left ventricular vortex dynamics play a crucial role in cardiac function but are significantly altered by mitral valve diseases or surgical interventions. Such hemodynamic changes may lead to maladaptive intracardiac vortices, potentially triggering pathways associated with progressive left ventricular remodeling and thrombosis. This study assessed left ventricular hemodynamics under both physiological and pathological conditions using a biohybrid in vitro platform, aiming to analyze the impact of these conditions on cardiac function.</div></div><div><h3>Methods</h3><div>An in vitro platform was established to simulate 6 mitral valve conditions: healthy, mitral regurgitation, bioprosthetic valve replacement, mechanical valve replacement (in 2 orientations), and transcatheter mitral valve edge-to-edge repair. Flow fields within the left ventricle were captured using 4-dimensional particle image velocimetry, including mean flow fields, vortex depth, vortex transversal position, viscous shear stress, and energy dissipation.</div></div><div><h3>Results</h3><div>Mitral regurgitation preserved vortex structure compared with healthy conditions. Mechanical valves altered vortex direction and reduced vortex transversal position (0.66-0.47, <em>P</em> &lt; .001), potentially impairing pump efficiency and increasing cardiac workload. Bioprosthetic valves displaced the vortex away from the apex, decreasing vortex depth (0.64-0.32, <em>P</em> &lt; .001), which may elevate apical thrombosis risk. Transcatheter mitral valve edge-to-edge repair reduced mitral regurgitation but significantly increased energy dissipation and viscous shear stress, indicating higher cardiac energy expenditure and disturbed flow.</div></div><div><h3>Conclusions</h3><div>Preserving native valve function optimizes left ventricular hemodynamics, whereas valve replacements and transcatheter mitral valve edge-to-edge repair alter flow patterns, increasing cardiac workload and thrombotic risks. These findings underscore the importance of assessing left ventricular flow dynamics in the treatment of mitral regurgitation.</div></div>\",\"PeriodicalId\":74032,\"journal\":{\"name\":\"JTCVS open\",\"volume\":\"26 \",\"pages\":\"Pages 104-114\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JTCVS open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666273625002189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JTCVS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666273625002189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的左心室涡旋动力学在心功能中起着至关重要的作用,但由于二尖瓣疾病或手术干预而明显改变。这种血流动力学的改变可能导致心内漩涡的不适应,潜在地触发与进行性左心室重构和血栓形成相关的通路。本研究使用生物杂交体外平台评估生理和病理条件下左心室血流动力学,旨在分析这些条件对心功能的影响。方法建立二尖瓣体外平台,模拟健康、二尖瓣反流、生物人工瓣膜置换术、机械瓣膜置换术(2个方向)和经导管二尖瓣边缘修复6种情况。采用四维粒子图像测速技术捕获左心室内的流场,包括平均流场、涡旋深度、涡旋横向位置、粘性剪切应力和能量耗散。结果与正常情况相比,二尖瓣反流保留了旋涡结构。机械阀改变了旋涡方向,降低了旋涡横向位置(0.66-0.47,P < .001),潜在地降低了泵的效率,增加了心脏负荷。生物假体瓣膜使漩涡远离心尖,使漩涡深度降低(0.64-0.32,P < .001),可能增加心尖血栓形成的风险。经导管二尖瓣边缘到边缘修复减少了二尖瓣反流,但显著增加了能量耗散和粘性剪切应力,表明心脏能量消耗增加和血流紊乱。结论保留原有瓣膜功能可优化左室血流动力学,而瓣膜置换术和经导管二尖瓣边缘到边缘修复会改变血流模式,增加心脏负荷和血栓形成风险。这些发现强调了评估左心室血流动力学在二尖瓣反流治疗中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of mitral valve interventions on left ventricular hemodynamics: Insights into energy loss and flow dynamics

Objectives

Left ventricular vortex dynamics play a crucial role in cardiac function but are significantly altered by mitral valve diseases or surgical interventions. Such hemodynamic changes may lead to maladaptive intracardiac vortices, potentially triggering pathways associated with progressive left ventricular remodeling and thrombosis. This study assessed left ventricular hemodynamics under both physiological and pathological conditions using a biohybrid in vitro platform, aiming to analyze the impact of these conditions on cardiac function.

Methods

An in vitro platform was established to simulate 6 mitral valve conditions: healthy, mitral regurgitation, bioprosthetic valve replacement, mechanical valve replacement (in 2 orientations), and transcatheter mitral valve edge-to-edge repair. Flow fields within the left ventricle were captured using 4-dimensional particle image velocimetry, including mean flow fields, vortex depth, vortex transversal position, viscous shear stress, and energy dissipation.

Results

Mitral regurgitation preserved vortex structure compared with healthy conditions. Mechanical valves altered vortex direction and reduced vortex transversal position (0.66-0.47, P < .001), potentially impairing pump efficiency and increasing cardiac workload. Bioprosthetic valves displaced the vortex away from the apex, decreasing vortex depth (0.64-0.32, P < .001), which may elevate apical thrombosis risk. Transcatheter mitral valve edge-to-edge repair reduced mitral regurgitation but significantly increased energy dissipation and viscous shear stress, indicating higher cardiac energy expenditure and disturbed flow.

Conclusions

Preserving native valve function optimizes left ventricular hemodynamics, whereas valve replacements and transcatheter mitral valve edge-to-edge repair alter flow patterns, increasing cardiac workload and thrombotic risks. These findings underscore the importance of assessing left ventricular flow dynamics in the treatment of mitral regurgitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信