基于粒子群优化的软投票CNN集合用于子宫内膜癌组织病理学分类

Firas Ibrahim AlZobi , Khalid Mansour , Ahmad Nasayreh , Ghassan Samara , Neda’a Alsalman , Ayah Bashkami , Aseel Smerat , Khalid M.O. Nahar
{"title":"基于粒子群优化的软投票CNN集合用于子宫内膜癌组织病理学分类","authors":"Firas Ibrahim AlZobi ,&nbsp;Khalid Mansour ,&nbsp;Ahmad Nasayreh ,&nbsp;Ghassan Samara ,&nbsp;Neda’a Alsalman ,&nbsp;Ayah Bashkami ,&nbsp;Aseel Smerat ,&nbsp;Khalid M.O. Nahar","doi":"10.1016/j.cmpbup.2025.100217","DOIUrl":null,"url":null,"abstract":"<div><div>The heterogeneity of endometrial cancer tissue presents a significant obstacle to accurate automated classification using histopathological images. While ensemble methods are a promising alternative to single Convolutional Neural Networks (CNNs), we introduce PSO-SV (Particle Swarm Optimization–Soft Voting), a novel framework that adaptively fuses the outputs of MobileNetV2, VGG19, DenseNet121, Swin Transformer, and Vision Transformer (ViT). Our key innovation is the use of Particle Swarm Optimization to dynamically determine the optimal contribution of each model in a soft-voting ensemble. We validated PSO-SV on two datasets, the first one consists from 11,977 tiles from 95 whole-slide images (WSIs) obtained from The Cancer Genome Atlas Uterine Corpus Endometrial Carcinoma (TCGA-UCEC) project, the other dataset consists of 3,302 images from 498 patients, which are categorized into four classes. The proposed framework achieved outstanding results, including 99.67% accuracy, a 99.67% F1-score, and an Area Under the Curve (AUC) of 99.9% on the first dataset and 99% for all metrics for the second dataset. It consistently outperformed all three individual CNNs and a traditional hard-voting ensemble, highlighting its ability to synergistically combine complementary model strengths. The PSO-SV framework offers a powerful and clinically promising approach for robust endometrial cancer classification.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"8 ","pages":"Article 100217"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized soft-voting CNN ensemble using particle swarm optimization for endometrial cancer histopathology classification\",\"authors\":\"Firas Ibrahim AlZobi ,&nbsp;Khalid Mansour ,&nbsp;Ahmad Nasayreh ,&nbsp;Ghassan Samara ,&nbsp;Neda’a Alsalman ,&nbsp;Ayah Bashkami ,&nbsp;Aseel Smerat ,&nbsp;Khalid M.O. Nahar\",\"doi\":\"10.1016/j.cmpbup.2025.100217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The heterogeneity of endometrial cancer tissue presents a significant obstacle to accurate automated classification using histopathological images. While ensemble methods are a promising alternative to single Convolutional Neural Networks (CNNs), we introduce PSO-SV (Particle Swarm Optimization–Soft Voting), a novel framework that adaptively fuses the outputs of MobileNetV2, VGG19, DenseNet121, Swin Transformer, and Vision Transformer (ViT). Our key innovation is the use of Particle Swarm Optimization to dynamically determine the optimal contribution of each model in a soft-voting ensemble. We validated PSO-SV on two datasets, the first one consists from 11,977 tiles from 95 whole-slide images (WSIs) obtained from The Cancer Genome Atlas Uterine Corpus Endometrial Carcinoma (TCGA-UCEC) project, the other dataset consists of 3,302 images from 498 patients, which are categorized into four classes. The proposed framework achieved outstanding results, including 99.67% accuracy, a 99.67% F1-score, and an Area Under the Curve (AUC) of 99.9% on the first dataset and 99% for all metrics for the second dataset. It consistently outperformed all three individual CNNs and a traditional hard-voting ensemble, highlighting its ability to synergistically combine complementary model strengths. The PSO-SV framework offers a powerful and clinically promising approach for robust endometrial cancer classification.</div></div>\",\"PeriodicalId\":72670,\"journal\":{\"name\":\"Computer methods and programs in biomedicine update\",\"volume\":\"8 \",\"pages\":\"Article 100217\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine update\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666990025000424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990025000424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

子宫内膜癌组织的异质性对使用组织病理学图像进行准确的自动分类提出了重大障碍。虽然集成方法是单一卷积神经网络(cnn)的一种有前途的替代方法,但我们引入了PSO-SV(粒子群优化-软投票),这是一种自适应融合MobileNetV2, VGG19, DenseNet121, Swin Transformer和Vision Transformer (ViT)输出的新框架。我们的关键创新是使用粒子群优化来动态确定每个模型在软投票集合中的最佳贡献。我们在两个数据集上验证了PSO-SV,第一个数据集包括来自癌症基因组图谱子宫肌体子宫内膜癌(TCGA-UCEC)项目的95张全片图像(WSIs)中的11,977张,另一个数据集包括来自498名患者的3,302张图像,分为四类。提出的框架取得了出色的结果,包括99.67%的准确率,99.67%的f1分数,第一个数据集的曲线下面积(AUC)为99.9%,第二个数据集的所有指标为99%。它始终优于所有三个单独的cnn和传统的硬投票集合,突出了其协同结合互补模型优势的能力。PSO-SV框架为子宫内膜癌分类提供了一种强大的、有临床前景的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized soft-voting CNN ensemble using particle swarm optimization for endometrial cancer histopathology classification
The heterogeneity of endometrial cancer tissue presents a significant obstacle to accurate automated classification using histopathological images. While ensemble methods are a promising alternative to single Convolutional Neural Networks (CNNs), we introduce PSO-SV (Particle Swarm Optimization–Soft Voting), a novel framework that adaptively fuses the outputs of MobileNetV2, VGG19, DenseNet121, Swin Transformer, and Vision Transformer (ViT). Our key innovation is the use of Particle Swarm Optimization to dynamically determine the optimal contribution of each model in a soft-voting ensemble. We validated PSO-SV on two datasets, the first one consists from 11,977 tiles from 95 whole-slide images (WSIs) obtained from The Cancer Genome Atlas Uterine Corpus Endometrial Carcinoma (TCGA-UCEC) project, the other dataset consists of 3,302 images from 498 patients, which are categorized into four classes. The proposed framework achieved outstanding results, including 99.67% accuracy, a 99.67% F1-score, and an Area Under the Curve (AUC) of 99.9% on the first dataset and 99% for all metrics for the second dataset. It consistently outperformed all three individual CNNs and a traditional hard-voting ensemble, highlighting its ability to synergistically combine complementary model strengths. The PSO-SV framework offers a powerful and clinically promising approach for robust endometrial cancer classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信